signaling complex
Recently Published Documents


TOTAL DOCUMENTS

1024
(FIVE YEARS 189)

H-INDEX

111
(FIVE YEARS 8)

2022 ◽  
Vol 119 (3) ◽  
pp. e2110917119
Author(s):  
Zongyan Yu ◽  
Zhiwen Yang ◽  
Guoru Ren ◽  
Yingjie Wang ◽  
Xiang Luo ◽  
...  

Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type–dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.


Science ◽  
2022 ◽  
Vol 375 (6576) ◽  
pp. 86-91
Author(s):  
Dipak N. Patil ◽  
Shikha Singh ◽  
Thibaut Laboute ◽  
Timothy S. Strutzenberg ◽  
Xingyu Qiu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Joyce Ikedife ◽  
Jianlin He ◽  
Yufeng Wei

AbstractPhosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Kelly Airiau ◽  
Pierre Vacher ◽  
Olivier Micheau ◽  
Valerie Prouzet-Mauleon ◽  
Guido Kroemer ◽  
...  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively kills various cancer cell types, but also leads to the activation of signaling pathways that favor resistance to cell death. Here, we investigated the as yet unknown roles of calcium signaling and autophagy regulatory proteins during TRAIL-induced cell death in leukemia cells. Taking advantage of the Gene Expression Profiling Interactive Analysis (GEPIA) project, we first found that leukemia patients present a unique TRAIL receptor gene expression pattern that may reflect their resistance to TRAIL. The exposure of NB4 acute promyelocytic leukemia cells to TRAIL induces intracellular Ca2+ influx through a calcium release-activated channel (CRAC)-dependent mechanism, leading to an anti-apoptotic response. Mechanistically, we showed that upon TRAIL treatment, two autophagy proteins, ATG7 and p62/SQSTM1, are recruited to the death-inducing signaling complex (DISC) and are essential for TRAIL-induced Ca2+ influx and cell death. Importantly, the treatment of NB4 cells with all-trans retinoic acid (ATRA) led to the upregulation of p62/SQSTM1 and caspase-8 and, when added prior to TRAIL stimulation, significantly enhanced DISC formation and the apoptosis induced by TRAIL. In addition to uncovering new pleiotropic roles for autophagy proteins in controlling the calcium response and apoptosis triggered by TRAIL, our results point to novel therapeutic strategies for sensitizing leukemia cells to TRAIL.


2021 ◽  
Vol 118 (50) ◽  
pp. e2001602118
Author(s):  
Rosalind L. Ang ◽  
Mark Chan ◽  
Diana Legarda ◽  
John P. Sundberg ◽  
Shao-Cong Sun ◽  
...  

SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld−/− mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld−/− cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.


2021 ◽  
Author(s):  
Yandan Yang ◽  
Thomas Oellerich ◽  
Ping Chen ◽  
Arnold Bolomsky ◽  
Michele Ceribelli ◽  
...  

Oncogenic mutations within the RAS pathway are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employed an unbiased proteogenomic approach to dissect RAS signaling in MM by combining genome-wide CRISPR-Cas9 screening with quantitative mass spectrometry focused on RAS biology. We discovered that mutant isoforms of RAS organized a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activated mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes were more aggressive and enriched in RAS mutations, and we detected interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergized with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this novel mode of RAS signaling.


2021 ◽  
Vol 118 (47) ◽  
pp. e2107044118
Author(s):  
Feng-Ming Yang ◽  
Hui-Ming Chang ◽  
Edward T. H. Yeh

Recognition of invading pathogens by Toll-like receptors (TLRs) activates innate immunity through signaling pathways that involved multiple protein kinases and phosphatases. We previously demonstrated that somatic nuclear autoantigenic sperm protein (sNASP) binds to TNF receptor–associated factor 6 (TRAF6) in the resting state. Upon TLR4 activation, a signaling complex consisting of TRAF6, sNASP, interleukin (IL)-1 receptor–associated kinase 4, and casein kinase 2 (CK2) is formed. CK2 then phosphorylates sNASP to release phospho-sNASP (p-sNASP) from TRAF6, initiating downstream signaling pathways. Here, we showed that protein phosphatase 4 (PP4) is the specific sNASP phosphatase that negatively regulates TLR4-induced TRAF6 activation and its downstream signaling pathway. Mechanistically, PP4 is directly recruited by phosphorylated sNASP to dephosphorylate p-sNASP to terminate TRAF6 activation. Ectopic expression of PP4 specifically inhibited sNASP-dependent proinflammatory cytokine production and downstream signaling following bacterial lipopolysaccharide (LPS) treatment, whereas silencing PP4 had the opposite effect. Primary macrophages and mice infected with recombinant adenovirus carrying a gene encoding PP4 (Ad-PP4) showed significant reduction in IL-6 and TNF-α production. Survival of Ad-PP4–infected mice was markedly increased due to a better ability to clear bacteria in a sepsis model. These results indicate that the serine/threonine phosphatase PP4 functions as a negative regulator of innate immunity by regulating the binding of sNASP to TRAF6.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saki Takayanagi ◽  
Kengo Watanabe ◽  
Takeshi Maruyama ◽  
Motoyuki Ogawa ◽  
Kazuhiro Morishita ◽  
...  

AbstractRecent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Heng Liu ◽  
Dapeng Sun ◽  
Alexander Myasnikov ◽  
Marjorie Damian ◽  
Jean-Louis Baneres ◽  
...  

AbstractThe hunger hormone ghrelin activates the ghrelin receptor GHSR to stimulate food intake and growth hormone secretion and regulate reward signaling. Acylation of ghrelin at Ser3 is required for its agonistic action on GHSR. Synthetic agonists of GHSR are under clinical evaluation for disorders related to appetite and growth hormone dysregulation. Here, we report high-resolution cryo-EM structures of the GHSR-Gi signaling complex with ghrelin and the non-peptide agonist ibutamoren as an investigational new drug. Our structures together with mutagenesis data reveal the molecular basis for the binding of ghrelin and ibutamoren. Structural comparison suggests a salt bridge and an aromatic cluster near the agonist-binding pocket as important structural motifs in receptor activation. Notable structural variations of the Gi and GHSR coupling are observed in our cryo-EM analysis. Our results provide a framework for understanding GHSR signaling and developing new GHSR agonist drugs.


Sign in / Sign up

Export Citation Format

Share Document