scholarly journals Modulation of thrombin-mediated activation of factor VIII:C by calcium ions, phospholipid, and platelets

Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 53-58
Author(s):  
MB Hultin

The activation of factor VIII:C by thrombin appears to be an important prerequisite for the function of factor VIII:C as a cofactor in factor X activation in coagulation. The possible modulation of factor VIII:C activation by potential cofactors such as calcium ions, phospholipid, and platelets was studied systematically. Factor VIII:C activation could not be studied in the complete absence of Ca2+, since factor VIII:C activity decayed rapidly in calcium-free buffers, EDTA, or ethylene glycol tetra-acetic acid (EGTA), with only partial or no recovery of activity after readdition of Ca2+, Mn2+, or Mg2+. Added calcium chloride at 1.25, 2.5, 4, 10, 50, and 200 mmol/L produced progressive inhibition of factor VIII:C activation, with complete inhibition achieved by 50 mmol/L. Crude phospholipid preparations gave varying results, while purified phospholipids either had no effect or inhibited activation. This paper reports the new finding that fresh washed human platelets markedly potentiated factor VIII:C activation by a low concentration of thrombin (0.02 U/mL), even with prostaglandin E1 (PGE1) or dibutyryl cyclic AMP (cAMP) added to the washed platelets. However, the activity of platelets in factor VIII:C activation was inhibited by inclusion of PGE1 or dibutyryl cAMP during platelet washing, and ionophore A23187 increased this platelet activity; these data suggest that platelet stimulation is involved in the development of this activity. When platelets were maximally stimulated by thrombin (0.5 U/mL), the external calcium concentration increased 55 to 160 mumol/L, as measured with murexide, supporting the possible modulation of factor VIII:C activation by a transient increase in Ca2+ at the platelet surface.

Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 53-58 ◽  
Author(s):  
MB Hultin

Abstract The activation of factor VIII:C by thrombin appears to be an important prerequisite for the function of factor VIII:C as a cofactor in factor X activation in coagulation. The possible modulation of factor VIII:C activation by potential cofactors such as calcium ions, phospholipid, and platelets was studied systematically. Factor VIII:C activation could not be studied in the complete absence of Ca2+, since factor VIII:C activity decayed rapidly in calcium-free buffers, EDTA, or ethylene glycol tetra-acetic acid (EGTA), with only partial or no recovery of activity after readdition of Ca2+, Mn2+, or Mg2+. Added calcium chloride at 1.25, 2.5, 4, 10, 50, and 200 mmol/L produced progressive inhibition of factor VIII:C activation, with complete inhibition achieved by 50 mmol/L. Crude phospholipid preparations gave varying results, while purified phospholipids either had no effect or inhibited activation. This paper reports the new finding that fresh washed human platelets markedly potentiated factor VIII:C activation by a low concentration of thrombin (0.02 U/mL), even with prostaglandin E1 (PGE1) or dibutyryl cyclic AMP (cAMP) added to the washed platelets. However, the activity of platelets in factor VIII:C activation was inhibited by inclusion of PGE1 or dibutyryl cAMP during platelet washing, and ionophore A23187 increased this platelet activity; these data suggest that platelet stimulation is involved in the development of this activity. When platelets were maximally stimulated by thrombin (0.5 U/mL), the external calcium concentration increased 55 to 160 mumol/L, as measured with murexide, supporting the possible modulation of factor VIII:C activation by a transient increase in Ca2+ at the platelet surface.


Blood ◽  
1985 ◽  
Vol 65 (2) ◽  
pp. 319-332 ◽  
Author(s):  
J Rosing ◽  
JL van Rijn ◽  
EM Bevers ◽  
G van Dieijen ◽  
P Comfurius ◽  
...  

The effect of activated human platelets in intrinsic factor X activation was compared with their effect in prothrombin activation. Compared with unstimulated platelets, platelets triggered by the combined action of collagen plus thrombin showed a tenfold activity increase in prothrombin activation, and a 20-fold rate enhancement in factor X activation. Treatment of collagen plus thrombin-stimulated platelets with N.naja phospholipase A2 almost completely abolished their activity in prothrombin and factor X activation. Since no significant cell lysis occurs during phospholipase treatment, this indicates that platelet phospholipids, exposed at the membrane exterior, play an essential role in the interaction of platelets with the proteins of the prothrombin and factor X-activating complexes. The time course of generation of the procoagulant platelet surface was different when the amount of coagulation factors present in the assay systems was varied. At suboptimal concentrations of coagulation factors, maximum platelet activity was reached after a shorter time period than at saturating concentrations. When measured at suboptimal amounts of coagulation factors, the platelet activity in prothrombin and factor X activation is also more sensitive to phospholipase treatment. Experiments with synthetic phospholipid mixtures show that prothrombin and factor X activation are optimal at low mol% phosphatidylserine when high concentrations of factor Va and factor VIIIa are employed. The optimal mol% phosphatidylserine increases when the concentrations of nonenzymatic protein cofactors are lowered. These findings are discussed in relation to a model in which phosphatidylserine, exposed at the outer surface of activated platelets, plays an essential role in prothrombin and factor X activation. It is proposed that this phosphatidylserine is not homogeneously distributed in the platelet outer membrane, but that areas with different phosphatidylserine density participate in coagulation factor activation.


Blood ◽  
1985 ◽  
Vol 65 (2) ◽  
pp. 319-332 ◽  
Author(s):  
J Rosing ◽  
JL van Rijn ◽  
EM Bevers ◽  
G van Dieijen ◽  
P Comfurius ◽  
...  

Abstract The effect of activated human platelets in intrinsic factor X activation was compared with their effect in prothrombin activation. Compared with unstimulated platelets, platelets triggered by the combined action of collagen plus thrombin showed a tenfold activity increase in prothrombin activation, and a 20-fold rate enhancement in factor X activation. Treatment of collagen plus thrombin-stimulated platelets with N.naja phospholipase A2 almost completely abolished their activity in prothrombin and factor X activation. Since no significant cell lysis occurs during phospholipase treatment, this indicates that platelet phospholipids, exposed at the membrane exterior, play an essential role in the interaction of platelets with the proteins of the prothrombin and factor X-activating complexes. The time course of generation of the procoagulant platelet surface was different when the amount of coagulation factors present in the assay systems was varied. At suboptimal concentrations of coagulation factors, maximum platelet activity was reached after a shorter time period than at saturating concentrations. When measured at suboptimal amounts of coagulation factors, the platelet activity in prothrombin and factor X activation is also more sensitive to phospholipase treatment. Experiments with synthetic phospholipid mixtures show that prothrombin and factor X activation are optimal at low mol% phosphatidylserine when high concentrations of factor Va and factor VIIIa are employed. The optimal mol% phosphatidylserine increases when the concentrations of nonenzymatic protein cofactors are lowered. These findings are discussed in relation to a model in which phosphatidylserine, exposed at the outer surface of activated platelets, plays an essential role in prothrombin and factor X activation. It is proposed that this phosphatidylserine is not homogeneously distributed in the platelet outer membrane, but that areas with different phosphatidylserine density participate in coagulation factor activation.


1979 ◽  
Author(s):  
E van Wijk ◽  
L Kahlé ◽  
J ten Cate

In a system of washed human platelets, Ca2+and purified human factors X anc II, a sufficient amount of thrombin is generated in about 10 minutes to aggregate the platelets. This thrombin is formed through the activation of FX by the platelets. In a system with either FX or FII present, no aggregation occurs. In addition no aggregation is observed when hirudin, a specific thrombin inhibitor, or when soybean trypsin inhibitor, which inhibits factor Xa, are added to the mixture. The formation of factor Xa can be monitored indirectly through the generation of thrombin, in the presence of an excess of prothrombin, using a thrombin sensitive chromogenic substrate. When washed platelets are incubated with FX alone for 10 minutes, no aggregation occurs and after the addition of prothrombin aggregation starts within 6 minutes. These findings confirm that washed platelets possess a factor X activating property. The generation of FXa proceeds in the absence of added Ca2+, whereas in the presence of Ca2+factor Xa activity reaches a maximum in 3 minutes, whereafter the activity progressively decreases. This may be due to the binding of Xa to the platelets in the presence of calcium ions.


1979 ◽  
Author(s):  
E.M. van Wijk ◽  
L.H. Kahlé ◽  
J.W. ten Cate

In a system of washed human platelets, Ca2+ and purified human factors X an. II, a sufficient amount of thrombin is generated in about 10 minutes to aggregate the platelets. This thrombin is formed through the activation of FX by the platelets. In a system with either FX or FII present, no aggregation occurs. In addition no aggregation is observed when hirudin, a specific thrombin inhibitor, or when soybean trypsin inhibitor, which inhibits factor Xa, are added to the mixture. The formation of factor Xa can be monitored indirectly through the generation of thrombin, in the presence of an excess of prothrombin, using a thrombin sensitive chromogenic substrate. When washed platelets are incubated with FX along for 10 minutes, no aggregation occurs and after the addition of prothrombin aggregation starts within 6 minutes. These findings confirm that washed platelets possess a factor X activating property. The generation of FXa proceeds in the absence of added Ca2+, whereas in the presence of Ca2+ factor Xa activity reaches a maximum in 3 minutes, whereafter the activity progressively decreases. This may be due to the binding of Xa to the platelets in the presence of calcium ions.


2000 ◽  
Vol 278 (6) ◽  
pp. H2008-H2019 ◽  
Author(s):  
Anna Babinska ◽  
Michael V. Hogan ◽  
Tomasz Sobocki ◽  
Malgorzata B. Sobocka ◽  
Yigal H. Ehrlich ◽  
...  

Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[α32P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[α32P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca2+flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.


1981 ◽  
Author(s):  
Jonathan L Miller ◽  
Theodore M Mazer

The potentiometric dye, Di-S-C3(5) (0.9μM) was incubated with stirred suspensions of-3washed human platelets (5-6 × 104μl) in buffer containing 137mM NaCl, 2.7mM KCl, 0.2% dextrose, and 25mM Tris-HCl, pH 7.4 in an Ami neo-Bowman fluorometer, with excitation λ 620nm and emmision λ 680nm. Equilibrium levels of fluorescence (F) nearly doubled as external potassium concentration (K °) was increased from 2.7mM to 105.6mM. Addition of°2mM CaCl2 always produced immediate transient increases in F, regardless of K0 , in contrast to the increases or decreases produced by the potassium ionophore, valino- mycin (VAL) (5μM) in adherance to the electrochemical gradient determined by the choice of K°. Equilibrium F was also relatively insensitive to external calcium (Ca°) at either high or low levels of K . However, add?tion of the calcium ionophore, A23187 (10μM) produced immediate increases in F, with peak values (F-A23peak) increasing sharply with increasing Ca°. At a given Ca the F-A23peak was insensitve to K ° however, with the prior addition of VAL, F-A23peak became sensitive to K , particularly so at the lowest values of K° , where the F-A23peak was significantly lower in tne presence than in the absence of VAL. Replacement of sodium by choline had no significant effect on equilibrium F or on responses to VAL or to A23187- Platelet agglutination induced by ristocetin plus cryoprecipitate was not accompanied by similar increases in F.These findings suggest that Di – S–C3 F reflects a strong contribution of potassium permeability in the resting state, with relatively little contribution by calcium. Production of an activated state in platelets by A23187, in contrast, results in an increase in F that appears to reflect a major contribution by calcium.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2102-2102
Author(s):  
Valery Leytin ◽  
David J. Allen ◽  
Elena Lyubimov ◽  
Anna Chavlovski ◽  
Mingyu She ◽  
...  

Abstract Apoptosis, or programmed cell death, is the physiologic mechanism that serves for controlled deletion of unwanted cells. Apoptosis was initially attributed exclusively to nucleated cells but over the past decade it has been recognized that apoptosis also occurs in anucleated cytoplasts and platelets. In this study, using flow cytometry we analyzed in human platelets three critical manifestations of mitochondrial, cytoplasmic and plasma membrane apoptosis, mitochondrial inner transmembrane potential (Δψm) depolarization, caspase-3 activation and phosphatidylserine (PS) externalization, respectively. We found that these hallmarks of apoptosis can be induced in human platelet suspension by diverse stimuli, including human α-thrombin (1, 10, 100 nM), calcium ionophore A23187 (3, 5, 10 μM), high shear stresses generated by cone-and-plate viscometer (120, 200, 390 dyn/cm2) and prolonged storage of platelet concentrates in blood banking conditions at 22°C for 6 and 13 days. We also demonstrated that these apoptotic markers can be induced in mouse platelets in vivo in a murine model of immune thrombocytopenia caused by injection of anti-glycoprotein (GP) IIb (rat anti-mouse GPIIb, MWReg30) antibody. Other manifestations of apoptosis were detected in human platelets, including expression of proapoptotic members of Bcl-2 family proteins (Bax and Bak) induced by thrombin, and platelet shrinkage and shedding of microparticles induced by high shear stresses. In addition to apoptosis in fluid-phase platelets, apoptosis was also revealed by confocal fluorescent microscopy in adherent human platelets and thrombi-like platelet aggregates deposited on thrombogenic immobilized human vascular collagen types I and III, as detected by PS exposure and shedding of PS-exposed microparticles. Taken together, these data suggest that platelet apoptosis is a phenomenon that can be triggered by a wide diversity of chemical and physical stimuli using different mechanisms mediated by thrombin-, collagen- and integrin GPIIbIIIa-receptors, mechanoreceptors and Ca2+-overloading. These stimuli trigger platelet apoptosis by impacting on several intracellular apoptotic targets, including shifting the balance between Bcl-2 regulatory proteins in a proapoptotic direction, depolarizing the inner mitochondrial membrane, activating the executioner caspase-3, stimulating aberrant PS exposure on the platelet surface and, eventually, resulting in ‘terminal’ stages of platelet apoptosis, such as platelet shrinkage and shedding of PS-exposed microparticles resembling apoptotic bodies. Platelet apoptosis can be induced both in fluid-phase and adherent platelets and thrombi-like platelet aggregates. These data also indicate that natural PL agonists thrombin and subendothelial vascular collagens and hemodynamic shear forces, can be involved not only in the processes of hemostasis, thrombosis and blood coagulation but also can trigger platelet death via apoptosis. Platelet apoptosis may contribute to the pathophysiology of thrombocytopenia in diseases associated with enhanced thrombin generation, such as sepsis and disseminated intravascular coagulation, as well as in autoimmune and alloimmune thrombocytopenias.


1987 ◽  
Author(s):  
W Muntean ◽  
B Leschnik

In previous work we have shown that factor VII! binds to phospholipids of the membrane of stimulated platelets and that von Willebrand factor is not required for binding of factor VIII to platelets. Since factor VIII is a cofactor in the activation of factor X by factor IX, we investigated whether factor VIII enhances binding of factor IX to the platelet surface.Factor VIII and factor IX were purified by immunoadsorbent chromatography using specific rabbit antibodies. Washed human platelets (250/nl final concentration) stimulated by human thrombin and collagen were incubated with barbiturate buffer, or with purified factor IX (1 U/ml final concentration), or with factor IX (1 U/ml) in the presence of factor VIII (1 U/ml). Washed and stimulated platelets were also incubated with factor VIII and IX as above in the presence of different amounts of CaCl2. Platelets were then washed again and lysed by sonication. Factor VIII:Ag (immunoradiometric assay) and factor IX:Ag (ELISA) were measured in the platelet lysate prior to and after incubation of the lysate with phospholipase C.Platelet bound IX:Ag was significantly higher after incubation of stimulated platelets with factor IX in the presence of factor VIII than after incubation of platelets with buffer or with factor IX alone. CaCl2 proved to be essential for binding of factor IX to platelets even in the presence of factor VIII, but CaCl2 was not required for binding of factor VIII to platelets. Measurable VIII :Ag and IX:Ag increased significantly after incubation of the platelet lysate with phospholipase C.Our data suggest that factor VIII mediates binding of factor IX to phospholipids or receptors containing phospholipids on the membrane of stimulated platelets and thereby contributes to the assembly of the factor X activating complex on the platelet surface.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2998-2998
Author(s):  
Valery Leytin ◽  
Asuman Mutlu ◽  
Sergiy Mykhaylov ◽  
David J. Allen ◽  
Armen V. Gyulkhandanyan ◽  
...  

Abstract Abstract 2998 Poster Board II-976 Introduction: The platelet surface receptor glycoprotein (GP) IIbIIIa (integrin αaIIbβ3) mediates platelet aggregation and plays a key role in hemostasis and thrombosis. Numerous GPIIbIIIa antagonists have been designed and tested as inhibitors of platelet aggregation. Two of these antagonists, eptifibatide (Integrilin) and tirofiban (Aggrastat) have been approved by the U.S. Food and Drug Administration (FDA) and widely used for preventing and treating thrombotic complications in patients undergoing percutaneous coronary intervention and in patients with acute coronary syndromes. It has been reported, however, that some GPIIbIIIa antagonists, such as orbofiban and xemilofiban, promote apoptosis in cardiomyocytes by activation of the apoptosis executioner caspase-3, raising the possibility that platelets also may be susceptible to pro-apoptotic effects of eptifibatide and tirofiban. Over the past decade it has been well-documented that apoptosis occurs not only in nucleated cells but also in anucleated platelets stimulated with thrombin, calcium ionophores, very high shear stresses and platelet storage (Leytin et al, J Thromb Haemost 4: 2656, 2006; Mason et al, Cell 128: 1173, 2007). It has been further reported that platelet activation and apoptosis may be induced by different mechanisms and/or require different levels of triggering stumuli (Leytin et al, Br J Haematol 136: 762, 2007; Br J Haematol 142: 494, 2008). Recently, we have shown that injection of anti-GPIIb antibody induced caspase-3 activation in mouse platelets in vivo (Leytin et al, Br J Haematol 133: 78, 2006), suggesting that direct GPIIbIIIa-mediated pro-apoptotic signaling is able to trigger caspase-3 activation within platelets. Study Design and Methods: The current study aimed to examine, for the first time, the effect of eptifibatide and tirofiban on caspase-3 activation in human platelets. We studied the effects of eptifibatide and tirofiban on caspase-3 activation in resting platelets, which express GPIIbIIIa receptors in their non-active (“closed”) conformation, and in platelets stimulated with thrombin or calcium ionophore A23187, which induce transition of GPIIbIIIa receptors into active (“open”) conformation. Resting platelets were treated with control buffer, 0.48 μM eptifibatide or 0.48 μM tirofiban, and stimulated platelets were treated with 1 U/mL thrombin or 10 μM A23187, or preincubated with eptifibatide or tirofiban before treatment with thrombin or A23187. Caspase-3 activation was determined by flow cytometry using the cell-penetrating FAM-DEVD-FMK probe, which covalently binds to active caspase-3. Results and Discussion: We found that treatment of resting platelets with eptifibatide and tirofiban did not affect caspase-3 activation (P>0.05, n=7). In contrast, a 2.3-2.7-fold increase of caspase-3 activation was observed in platelets after thrombin or A23187 stimulation (P<0.01, n=7). However, when platelets were preincubated with eptifibatide and tirofiban before agonist treatment, these drugs significantly inhibited agonist-induced caspase-3 activation by an average of 44-50% (P<0.05, n=7). The fact that eptifibatide and tirofiban do not promote caspase-3 activation in unstimulated platelets suggests that these GPIIbIIIa antagonists do not induce transmission of pro-apoptotic transmembrane signals inside platelets through inactive GPIIbIIIa integrin. The inhibitory effect of eptifibatide and tirofiban on thrombin- and A23187-induced caspase-3 activation suggests a role of GPIIbIIIa integrin in caspase-3 activation induced by these platelet agonists. Conclusions: We have demonstrated a novel platelet-directed activity of two clinically used GPIIbIIIa antagonist drugs, eptifibatide (Integrilin) and tirofiban (Aggrastat), with ability to inhibit apoptosis executioner caspase-3 induced by potent platelet agonists, thrombin and A23187, and the absence of adverse pro-apoptotic effects on resting platelets. Taken together with earlier reported data (Leytin et al, Br J Haematol 133: 78, 2006), the current study indicates that, aside from their well-known participation in platelet activation and aggregation, GPIIbIIIa receptors are involved in the modulation of platelet apoptosis. This GPIIbIIIa-mediated mechanism of apoptosis modulation may be very efficient given the extremely large number of GPIIbIIIa copies (≈80,000) on the platelet surface. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document