scholarly journals The heterogeneity of type IIA von Willebrand's disease: studies with protease inhibitors

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1207-1212 ◽  
Author(s):  
J Batlle ◽  
MF Lopez Fernandez ◽  
M Campos ◽  
B Justica ◽  
C Berges ◽  
...  

The absence of large von Willebrand factor (vWF) multimers from plasma is a characteristic of Type IIA von Willebrand's disease (vWD) and is thought to contribute to the clinical expression of this disorder. Recently, three IIA patients have been reported in whom intermediate and large multimers could be restored if blood were collected in 5 mm EDTA, 6 mmol/L N-ethylmaleimide, and 1 mmol/L leupeptin. This suggested that absence of large multimers resulted from in vitro proteolysis. We have now collected blood from ten Type IIA vWD patients in these inhibitors but were not able to detect large multimers in the plasma of any of them. In addition, intermediate-sized multimers were reduced or completely absent in all. The inclusion of inhibitors in the citrate anticoagulant, as compared to citrate alone, was found to increase the relative proportion of intermediate multimers in some patients but had no effect in others, and in none did it restore large multimers to plasma. The results with platelet vWF were more varied. Four patients showed an absence or decrease of large multimers, whereas in seven patients large multimers were present. When compared with citrate anticoagulant alone, the inclusion of inhibitors in the anticoagulant had little or no effect on the platelet multimeric pattern. 1-Deamino-8- D-Arginine Vasopressin (DDAVP) was administered to six patients from five families. Two patients from one family showed complete correction and a third patient showed almost complete correction of her bleeding time. Two patients showed minimal correction and one showed no detectable correction. An increase in multimer size after DDAVP tended to be associated with correction of the bleeding time. However, in no case did the largest multimers appear in plasma even in patients with complete bleeding time correction. The presence or absence of inhibitors in the anticoagulant had little or no effect on the multimeric pattern after DDAVP. These results indicate that Type IIA vWD is a heterogeneous disorder in which absence of largest and intermediate multimers is an in vivo phenomenon.

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1207-1212 ◽  
Author(s):  
J Batlle ◽  
MF Lopez Fernandez ◽  
M Campos ◽  
B Justica ◽  
C Berges ◽  
...  

Abstract The absence of large von Willebrand factor (vWF) multimers from plasma is a characteristic of Type IIA von Willebrand's disease (vWD) and is thought to contribute to the clinical expression of this disorder. Recently, three IIA patients have been reported in whom intermediate and large multimers could be restored if blood were collected in 5 mm EDTA, 6 mmol/L N-ethylmaleimide, and 1 mmol/L leupeptin. This suggested that absence of large multimers resulted from in vitro proteolysis. We have now collected blood from ten Type IIA vWD patients in these inhibitors but were not able to detect large multimers in the plasma of any of them. In addition, intermediate-sized multimers were reduced or completely absent in all. The inclusion of inhibitors in the citrate anticoagulant, as compared to citrate alone, was found to increase the relative proportion of intermediate multimers in some patients but had no effect in others, and in none did it restore large multimers to plasma. The results with platelet vWF were more varied. Four patients showed an absence or decrease of large multimers, whereas in seven patients large multimers were present. When compared with citrate anticoagulant alone, the inclusion of inhibitors in the anticoagulant had little or no effect on the platelet multimeric pattern. 1-Deamino-8- D-Arginine Vasopressin (DDAVP) was administered to six patients from five families. Two patients from one family showed complete correction and a third patient showed almost complete correction of her bleeding time. Two patients showed minimal correction and one showed no detectable correction. An increase in multimer size after DDAVP tended to be associated with correction of the bleeding time. However, in no case did the largest multimers appear in plasma even in patients with complete bleeding time correction. The presence or absence of inhibitors in the anticoagulant had little or no effect on the multimeric pattern after DDAVP. These results indicate that Type IIA vWD is a heterogeneous disorder in which absence of largest and intermediate multimers is an in vivo phenomenon.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1213-1217 ◽  
Author(s):  
U Budde ◽  
JA Dent ◽  
SD Berkowitz ◽  
ZM Ruggeri ◽  
TS Zimmerman

Abstract In order to evaluate the role of proteolysis in acquired von Willebrand's disease (vWD) associated with the myeloproliferative syndrome, we have determined the relative quantity of von Willebrand factor (vWF) fragments as compared with the intact 225 kDa subunit in four patients. The plasma vWF of each individual lacked large multimers; each had a prolonged bleeding time; and both platelet and leukocyte counts were elevated. Plasma was obtained from blood drawn into 1 mmol/L leupeptin, 6 mmol/L N-ethylmaleimide, and 5 mmol/L EDTA to prevent in vitro proteolysis. vWF was isolated from plasma by immunoadsorbent chromatography, reduced, subjected to SDS-5% polyacrylamide gel electrophoresis, and immunoblotted with a mixture of 55 anti-vWF monoclonal antibodies. In three patients with essential thrombocytosis (ET) the 176 and 140 kDa fragments were increased in proportion to the intact 225 kDa subunit indicating increased proteolysis. Treatment of one ET patient with CCNU (Lomustine) decreased the platelet count and, to a lesser extent, the white blood cell count. This was associated with a correction of the bleeding time, a partial correction of the multimeric abnormality, and a lessening of vWF cleavage. In a patient with polycythemia rubra vera (PRV) the proportion of the 176 kDa fragment was increased to the upper limit of normal but there was no definite evidence of increased proteolysis. These studies provide evidence that proteolysis plays a role in the acquired von Willebrand's disease associated with the myeloproliferative syndrome. However, other mechanisms must also be considered.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 226-230
Author(s):  
JL Miller ◽  
BD Boselli ◽  
JM Kupinski

Previous studies performed in vitro have indicated that platelets from patients with platelet-type von Willebrand's disease (vWD) have receptors for von Willebrand factor (vWF) already exposed on their surfaces and that the addition of purified vWF or cryoprecipitate to patient platelet-rich plasma under stirring conditions is capable of inducing platelet aggregation and secretion. The present work reports the results of the transfusion of cryoprecipitate in a patient with platelet-type vWD. It is shown that, while factor VIII-related antigen and ristocetin cofactor activities maintain elevated levels for up to 12 hr following transfusion, the highest molecular weight vWF multimers decline rapidly. The platelet count also declines, followed in turn by a rise in the plasma level of platelet factor 4. Shortening of the bleeding time occurs only very transiently. The results of this study provide direct evidence that, in patients with platelet-type vWD, an abnormal interaction of their platelets with plasma vWF occurs in vivo, resulting in the absence of high molecular weight vWF multimers, low platelet counts, and impaired hemostasis that are characteristic of this disease.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1213-1217 ◽  
Author(s):  
U Budde ◽  
JA Dent ◽  
SD Berkowitz ◽  
ZM Ruggeri ◽  
TS Zimmerman

In order to evaluate the role of proteolysis in acquired von Willebrand's disease (vWD) associated with the myeloproliferative syndrome, we have determined the relative quantity of von Willebrand factor (vWF) fragments as compared with the intact 225 kDa subunit in four patients. The plasma vWF of each individual lacked large multimers; each had a prolonged bleeding time; and both platelet and leukocyte counts were elevated. Plasma was obtained from blood drawn into 1 mmol/L leupeptin, 6 mmol/L N-ethylmaleimide, and 5 mmol/L EDTA to prevent in vitro proteolysis. vWF was isolated from plasma by immunoadsorbent chromatography, reduced, subjected to SDS-5% polyacrylamide gel electrophoresis, and immunoblotted with a mixture of 55 anti-vWF monoclonal antibodies. In three patients with essential thrombocytosis (ET) the 176 and 140 kDa fragments were increased in proportion to the intact 225 kDa subunit indicating increased proteolysis. Treatment of one ET patient with CCNU (Lomustine) decreased the platelet count and, to a lesser extent, the white blood cell count. This was associated with a correction of the bleeding time, a partial correction of the multimeric abnormality, and a lessening of vWF cleavage. In a patient with polycythemia rubra vera (PRV) the proportion of the 176 kDa fragment was increased to the upper limit of normal but there was no definite evidence of increased proteolysis. These studies provide evidence that proteolysis plays a role in the acquired von Willebrand's disease associated with the myeloproliferative syndrome. However, other mechanisms must also be considered.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 226-230 ◽  
Author(s):  
JL Miller ◽  
BD Boselli ◽  
JM Kupinski

Abstract Previous studies performed in vitro have indicated that platelets from patients with platelet-type von Willebrand's disease (vWD) have receptors for von Willebrand factor (vWF) already exposed on their surfaces and that the addition of purified vWF or cryoprecipitate to patient platelet-rich plasma under stirring conditions is capable of inducing platelet aggregation and secretion. The present work reports the results of the transfusion of cryoprecipitate in a patient with platelet-type vWD. It is shown that, while factor VIII-related antigen and ristocetin cofactor activities maintain elevated levels for up to 12 hr following transfusion, the highest molecular weight vWF multimers decline rapidly. The platelet count also declines, followed in turn by a rise in the plasma level of platelet factor 4. Shortening of the bleeding time occurs only very transiently. The results of this study provide direct evidence that, in patients with platelet-type vWD, an abnormal interaction of their platelets with plasma vWF occurs in vivo, resulting in the absence of high molecular weight vWF multimers, low platelet counts, and impaired hemostasis that are characteristic of this disease.


1987 ◽  
Vol 58 (02) ◽  
pp. 753-757 ◽  
Author(s):  
M F López-Fernández ◽  
C López-Berges ◽  
R Martín ◽  
A Pardo ◽  
F J Ramos ◽  
...  

SummaryThe multimeric and subunit patterns of plasma von Willebrand factor (vWF) were analyzed in eight patients with myeloproliferative syndrome (MS) in order to investigate the possible existence of heterogeneity in the “in vivo” proteolytic cleavage of the protein, previously observed in this entity. Six patients lacked large vWF multimers, five of them having normal bleeding times (BT) and clinically documented episodes of thrombotic origin, whereas one patient had long BT and bleeding symptoms. Seven patients showed a relative increase in the 176 kDa subunit fragment while the 189 kDa polypeptide was increased in only one. In addition, another patient (and prior to any therapy) showed the presence of a new fragment of approximately 95 kDa which disappeared after Busulfan therapy. The collection of blood from these patients with proteinase inhibitors did not correct the abnormalities.The infusion of DDAVP to two patients with abnormal vWF was accompanied by: the appearance of larger vWF multimers which disappeared rapidly from plasma; an increase in the relative proportion of the satellite bands of each multimer and a further increase of the 176 kDa fragment. These data point to some heterogeneity in the vWF abnormality present in MS which may be related in part to a variable degree of proteolysis of vWF occurring “in vivo” rather than “in vitro”, and which may be associated to either a thrombotic or a bleeding diathesis. They also suggest that despite the presence of abnormal, already proteolyzed vWF, DDAVP-enhanced proteolysis occurs in MS to a similar extent to what is described in normal individuals.


2002 ◽  
Vol 88 (09) ◽  
pp. 421-426 ◽  
Author(s):  
Stefan Lethagen ◽  
Christina Isaksson ◽  
Charlotta Schaedel ◽  
Lars Holmberg

SummaryHereditary defects of the von Willebrand factor (VWF) gene cause von Willebrand’s disease (VWD) which shows great variability dependent on the nature and location of the mutation. We here describe the characteristics of a substitution of methionine for threonine 1156 in the D3 domain of the VWF, i.e. the domain involved in the intracellular multimerization of pro-VWF dimers. A VWD patient with severe symptoms was a compound heterozygote for the T1156M mutation and a null allele (Q2470X) on the other chromosome. This led to marked reduction of plasma VWF concentration to about 0.05 U/ml and an abnormality of VWF multimers as in type 2A VWD. Expression in vitro of the mutation demonstrated that 1156M-VWF is secreted from COS-7 cells in a much reduced amount and lacking large multimers. When coexpressed with normal VWF 1156M-VWF decreased the secretion of normal VWF in a dose-dependent manner, the secreted VWF showing all the multimers. Two relatives of the propositus were single heterozygotes for the T1156M mutation and were either asymptomatic or had the manifestations of mild type 1 VWD. The expression data and studies of platelet VWF indicate that the T1156M mutation results in intracellular retention of VWF rather than impaired synthesis. Three other members of the family were heterozygotes for the Q2470X mutation and demonstrated the variable expressivity of a null allele.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 465-468 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
LP McKeown ◽  
ME Rick ◽  
P Maisonneuve ◽  
...  

Abstract 1-D-Amino(8-D-arginine)-vasopressin (DDAVP) infusion in three patients with type IIa von Willebrand's disease (vWD) resulted in a normalization of the factor VIII coagulant, factor VIII-related antigen, and von Willebrand factor (vWF) (ristocetin cofactor) activities and the bleeding time. The normalization of these hemostatic parameters persisted for four hours. Over the same time period there was a marked increase in the quantity of the vWF multimers when blood was collected in the presence of protease inhibitors. The vWF multimers present were even larger than the normal. When blood was collected in the absence of protease inhibitors, a smaller increase in the plasma vWF multimers was observed and fewer of the intermediate and larger vWF multimers were seen; multimers larger than those present in normal plasma were not visualized. The platelet vWF multimers and activities did not change with or without inhibitors. These studies suggest that there is a subgroup of patients with type IIa vWD who respond to DDAVP with complete normalization of their hemostatic abnormalities and whose vWF is sensitive to proteolysis.


Blood ◽  
1982 ◽  
Vol 59 (6) ◽  
pp. 1272-1278 ◽  
Author(s):  
ZM Ruggeri ◽  
PM Mannucci ◽  
R Lombardi ◽  
AB Federici ◽  
TS Zimmerman

Abstract We have studied the modifications in the multimeric composition of plasma factor VIII/von Willebrand factor and the bleeding time response following administration of 1-Deamino-[8-D-arginine]-Vasopressin (DDAVP) to patients with different subtypes of von Willebrand's disease. In type I, all multimers were present in plasma in the resting state, though they were decreased in concentration. Administration of DDAVP resulted in an increased concentration of these forms as well as the appearance of larger forms than were previously present. There was concomitant correction of the bleeding time. In type IIA, large multimers were absent in the resting state, and although DDAVP induced an average threefold increase in the plasma concentration of factor VIII/von Willebrand factor, the larger multimers did not appear and the bleeding time, although shortened, was not corrected. In contrast, the larger multimers that were also absent from type IIB plasma in the resting state rapidly appeared following DDAVP administration. However, their appearance was transitory and the bleeding time, as in IIA patients, was shortened but not corrected. The characteristic multimeric composition of platelet factor VIII/von Willebrand factor in given subtypes predicted the alteration in plasma factor VIII/von Willebrand factor induced by DDAVP. These studies provide evidence that the different subtypes of von Willebrand's disease represent distinct abnormalities of factor VIII/von Willebrand factor. They also suggest that complete hemostatic correction following DDAVP can be routinely expected only in type I von Willebrand's disease, and only if factor VIII/von Willebrand factor can be raised to normal levels.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 58-61 ◽  
Author(s):  
HR Gralnick ◽  
ME Rick ◽  
LP McKeown ◽  
SB Williams ◽  
RI Parker ◽  
...  

Abstract We studied 17 patients with moderate to mild type I von Willebrand's disease (vWd) and correlated the bleeding time with the plasma von Willebrand factor antigen (vWf Ag), the plasma vWf activity (ristocetin cofactor), the platelet vWf Ag, and the platelet vWf activity. We found an excellent correlation between the bleeding time and the platelet vWf activity and, to a lesser extent, between the bleeding time and the platelet vWf Ag. The length of the bleeding time was inversely proportional to the level of the platelet vWf (P less than .001) or, to a lesser extent, the platelet vWf Ag (P less than .05). The plasma vWf Ag and activity did not correlate significantly with the bleeding time. These studies indicate that the platelet vWf is one of the important bleeding time factors in type I vWd and that the platelet vWf plays an important role in the early steps of hemostasis.


Sign in / Sign up

Export Citation Format

Share Document