scholarly journals Comparative thrombolytic properties of single-chain forms of urokinase- type plasminogen activator

Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 592-596 ◽  
Author(s):  
DC Stump ◽  
JM Stassen ◽  
E Demarsin ◽  
D Collen

Abstract The specific thrombolytic properties of urokinase and three molecular forms of single-chain urokinase-type plasminogen activator (scu-PA) were compared in a human plasma milieu in vitro and in an experimental thrombosis model in rabbits. These scu-PA molecules included Mr 54,000 scu-PA from human urine (urinary scu-PA), scu-PA from conditioned media of a human lung adenocarcinoma cell line (CALU-3,ATCC,HTB-55) (cellular scu-PA) and an Mr 32,000 proteolytic derivative of cellular scu-PA (scu- PA-32k). All four molecular forms induced significant lysis of a 125I- labeled human plasma clot immersed in citrated human plasma at concentrations between 50 and 200 IU/mL. None of the four showed absolute fibrin-specificity, but at equivalent lytic dose the three single-chain forms appeared to cause less fibrinogen degradation and alpha 2-antiplasmin consumption than two-chain urokinase. In addition, the fibrinolytic potential of the three single-chain forms was largely maintained during pre-incubation in plasma for up to 48 hours whereas that of urokinase was completely inhibited. Intravenous (IV) infusion of cellular scu-PA or scu-PA-32k into rabbits with a 125I-labeled thrombus in the jugular vein caused significant dose-dependent lysis at concentrations ranging from 8,700 to 35,000 and from 9,000 to 36,000 IU/kg respectively. Clot lysis was accompanied by minor alpha 2- antiplasmin consumption or fibrinogen breakdown. In contrast, urokinase induced lysis at doses between 20,000 and 200,000 IU/kg, but at higher doses was associated with significant systemic activation of the fibrinolytic system. It is concluded that scu-PA obtained from CALU-3 cell cultures has identical thrombolytic properties to that obtained from urine. In addition, the scu-PA-32k proteolytic derivative has the same fibrin-specific thrombolytic properties as the intact molecule. Cellular scu-PA and scu-PA-32k may therefore constitute more readily available alternatives for clot-selective thrombolytic therapy in man.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 592-596
Author(s):  
DC Stump ◽  
JM Stassen ◽  
E Demarsin ◽  
D Collen

The specific thrombolytic properties of urokinase and three molecular forms of single-chain urokinase-type plasminogen activator (scu-PA) were compared in a human plasma milieu in vitro and in an experimental thrombosis model in rabbits. These scu-PA molecules included Mr 54,000 scu-PA from human urine (urinary scu-PA), scu-PA from conditioned media of a human lung adenocarcinoma cell line (CALU-3,ATCC,HTB-55) (cellular scu-PA) and an Mr 32,000 proteolytic derivative of cellular scu-PA (scu- PA-32k). All four molecular forms induced significant lysis of a 125I- labeled human plasma clot immersed in citrated human plasma at concentrations between 50 and 200 IU/mL. None of the four showed absolute fibrin-specificity, but at equivalent lytic dose the three single-chain forms appeared to cause less fibrinogen degradation and alpha 2-antiplasmin consumption than two-chain urokinase. In addition, the fibrinolytic potential of the three single-chain forms was largely maintained during pre-incubation in plasma for up to 48 hours whereas that of urokinase was completely inhibited. Intravenous (IV) infusion of cellular scu-PA or scu-PA-32k into rabbits with a 125I-labeled thrombus in the jugular vein caused significant dose-dependent lysis at concentrations ranging from 8,700 to 35,000 and from 9,000 to 36,000 IU/kg respectively. Clot lysis was accompanied by minor alpha 2- antiplasmin consumption or fibrinogen breakdown. In contrast, urokinase induced lysis at doses between 20,000 and 200,000 IU/kg, but at higher doses was associated with significant systemic activation of the fibrinolytic system. It is concluded that scu-PA obtained from CALU-3 cell cultures has identical thrombolytic properties to that obtained from urine. In addition, the scu-PA-32k proteolytic derivative has the same fibrin-specific thrombolytic properties as the intact molecule. Cellular scu-PA and scu-PA-32k may therefore constitute more readily available alternatives for clot-selective thrombolytic therapy in man.



1991 ◽  
Vol 65 (04) ◽  
pp. 394-398 ◽  
Author(s):  
P J Declerck ◽  
H R Lijnen ◽  
M Verstreken ◽  
D Collen

SummaryThe role of plasma α2-antiplasmin (α2-AP) in the fibrinspecificity of clot lysis by recombinant single-chain urokinase-type plasminogen activator (rscu-PA) and in the conversion of rscu-PA to its two-chain derivative (rtcu-PA, urokinase) was investigated in an in vitro human plasma clot lysis system. Fifty % lysis in 2 h of a 0.1 ml 125l-fibrin labeled human plasma clot immersed in 0.5 ml normal human plasma was obtained with 1.4 ± 0.15 µg/ml rscu-PA (mean ± SD, n = 8). This was associated with degradation of 23 ± 7% of fibrinogen and generation of 0.20 ± 0.09 µg/ml rtcu-PA. In α2-AP-depleted plasrna 50% clot lysis in 2 h required 2-fold less rscu-PA which was associated with 3-fold more extensive fibrinogen degradation and 2-fold more rtcu-PA generation. Fifty % lysis in? h, of a 0.1 ml α2-AP-depleted plasma clot, subriersed in 0.5 ml normal plasma, was obtained with 0.80 ± 0.05 µg/ml rscu-PA (n = 3, p <0.001 vs normal clot) and was associated with 17 ± 6% fibrinogen breakdown (p : 0.22 vs normal clot) and 0.08 ± 0.02 µg/ml rtcu-PA generation (p < 0.05 vs normal clot). In α2-AP-depleted plasma the equipotent rscu-PA concentration was 4-fold lower than in normal plasma and was associated with 3-fold more fibrinogen degradation and a similar extent of rtcu-PA generationThus, α2-AP in plasma contributes significantly to the fibrinspecificity of rscu-PA, primarily via prevention of conversion in plasma of rscu-PA to rtcu-PA. Clot associated α2-AP increases the resistance of the clot to lysis with rscu-PA, but plays an only minor role in the fibrin-specificity of clot lysis in normal plasma.



Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1005-1018 ◽  
Author(s):  
M Dewerchin ◽  
HR Lijnen ◽  
JM Stassen ◽  
F De Cock ◽  
T Quertermous ◽  
...  

Abstract The murine monoclonal antiplatelet antibodies MA-TSPI-1 (directed against human thrombospondin) and MA-PMI-2, MA-PMI-1, and MA-LIBS-1 (directed against ligand-induced binding sites [LIBS] on human platelet glycoprotein IIb/IIIa) were conjugated with recombinant single-chain urokinase-type plasminogen activator (rscu-PA) using the cross-linking reagent N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP). The conjugates (rscu-PA/MA-TSPI-1, rscu-PA/MA-PMI-2, rscu-PA/MA-PMI-1, and rscu-PA/MA-LIBS-1), purified by immunoadsorption and gel filtration, were obtained with recoveries of 34% to 45%, with an average stoichiometry of 1.6 to 1.8 IgG molecules per rscu-PA molecule, and with unaltered specific activities and affinities. Preincubation of human platelet-rich plasma with rscu-PA/MA-PMI-2, rscu-PA/MA-PMI-1, or unconjugated rscu-PA resulted in partial inhibition of ADP-induced aggregation; 25% inhibition was obtained with 63 micrograms/mL rscu-PA and with 6 micrograms u-PA/mL rscu-PA/MA-PMI-2 or 1.2 micrograms u- PA/mL rscu-PA/MA-PMI-1. In an in vitro system composed of a 125I-fibrin- labeled platelet-rich human plasma clot immersed in normal human plasma, the conjugates had threefold to greater than 15-fold less fibrinolytic potency than unconjugated rscu-PA. The thrombolytic potency of rscu-PA/MA-PMI-1 and rscu-PA/MA-LIBS-1 was compared with that of rscu-PA and that of a control conjugate rscu-PA/MA-1C8 in a pulmonary embolism model in the hamster, using clots prepared from platelet-poor or platelet-rich human plasma. Lysis was measured 30 minutes after the end of a 60-minute intravenous infusion of the thrombolytic agents. rscu-PA, rscu-PA/MA-PMI-1, rscu-PA/MA-LIBS-1, as well as rscu-PA/MA-1C8 had comparable thrombolytic potencies (percent lysis per dose administered) towards platelet-poor human plasma clots. In contrast, the thrombolytic potency of rscu-PA/MA-PMI-1 and of rscu- PA/MA-LIBS-1 towards platelet-rich clots was 2.3- to 3-fold higher than that of rscu-PA (P less than .005) and fivefold to sevenfold higher than that of the control conjugate (P less than .01).



Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1005-1018 ◽  
Author(s):  
M Dewerchin ◽  
HR Lijnen ◽  
JM Stassen ◽  
F De Cock ◽  
T Quertermous ◽  
...  

The murine monoclonal antiplatelet antibodies MA-TSPI-1 (directed against human thrombospondin) and MA-PMI-2, MA-PMI-1, and MA-LIBS-1 (directed against ligand-induced binding sites [LIBS] on human platelet glycoprotein IIb/IIIa) were conjugated with recombinant single-chain urokinase-type plasminogen activator (rscu-PA) using the cross-linking reagent N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP). The conjugates (rscu-PA/MA-TSPI-1, rscu-PA/MA-PMI-2, rscu-PA/MA-PMI-1, and rscu-PA/MA-LIBS-1), purified by immunoadsorption and gel filtration, were obtained with recoveries of 34% to 45%, with an average stoichiometry of 1.6 to 1.8 IgG molecules per rscu-PA molecule, and with unaltered specific activities and affinities. Preincubation of human platelet-rich plasma with rscu-PA/MA-PMI-2, rscu-PA/MA-PMI-1, or unconjugated rscu-PA resulted in partial inhibition of ADP-induced aggregation; 25% inhibition was obtained with 63 micrograms/mL rscu-PA and with 6 micrograms u-PA/mL rscu-PA/MA-PMI-2 or 1.2 micrograms u- PA/mL rscu-PA/MA-PMI-1. In an in vitro system composed of a 125I-fibrin- labeled platelet-rich human plasma clot immersed in normal human plasma, the conjugates had threefold to greater than 15-fold less fibrinolytic potency than unconjugated rscu-PA. The thrombolytic potency of rscu-PA/MA-PMI-1 and rscu-PA/MA-LIBS-1 was compared with that of rscu-PA and that of a control conjugate rscu-PA/MA-1C8 in a pulmonary embolism model in the hamster, using clots prepared from platelet-poor or platelet-rich human plasma. Lysis was measured 30 minutes after the end of a 60-minute intravenous infusion of the thrombolytic agents. rscu-PA, rscu-PA/MA-PMI-1, rscu-PA/MA-LIBS-1, as well as rscu-PA/MA-1C8 had comparable thrombolytic potencies (percent lysis per dose administered) towards platelet-poor human plasma clots. In contrast, the thrombolytic potency of rscu-PA/MA-PMI-1 and of rscu- PA/MA-LIBS-1 towards platelet-rich clots was 2.3- to 3-fold higher than that of rscu-PA (P less than .005) and fivefold to sevenfold higher than that of the control conjugate (P less than .01).



1986 ◽  
Vol 56 (01) ◽  
pp. 035-039 ◽  
Author(s):  
D Collen ◽  
F De Cock ◽  
E Demarsin ◽  
H R Lijnen ◽  
D C Stump

SummaryA potential synergic effect of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (scuPA) or urokinase on clot lysis was investigated in a whole human plasma system in vitro. The system consisted of a human plasma clot labeled with 125I-fibrinogen, immersed in titrated whole human plasma, to which the thrombolytic agents were added. Clot lysis was quantitated by measurement of released 125I, and activation of the fibrinolytic system in the surrounding plasma by measurements of fibrinogen and α2-antiplasmin.t-PA, scu-PA and urokinase induced a dose-dependent and time-dependent clot lysis; 50 percent lysis after 2 h was obtained with 5 nM t-PA, 20 nM scu-PA and 12 nM urokinase. At these concentrations no significant activation of the fibrinolytic system in the plasma was observed with t-PA and scu-PA, whereas urokinase caused significant α2-antiplasmin consumption and concomitant fibrinogen degradation. The shape of the dose-response curves was different; t-PA and urokinase showed a log linear dose-response whereas that of scu-PA was sigmoidal.



Blood ◽  
1990 ◽  
Vol 75 (9) ◽  
pp. 1794-1800 ◽  
Author(s):  
PJ Declerck ◽  
HR Lijnen ◽  
M Verstreken ◽  
H Moreau ◽  
D Collen

Abstract A murine monoclonal antibody (MA-12E6A8) was raised against human urokinase-type plasminogen activator (u-PA), which, in an enzyme-linked immunosorbent assay (ELISA), reacted 15,000-fold better with recombinant two-chain u-PA (rtcu-PA) than with recombinant single-chain u-PA (rscu-PA). The antibody had no effect on the activity of rtcu-PA or on its inhibition by a chloromethylketone, but reduced the inhibition of rtcu-PA by recombinant plasminogen activator inhibitor-1 (rPAI-1) at least 10-fold. The dissociation constant of the rtcu-PA/MA- 12E6A8 complex was 7 nmol/L. An ELISA was developed using MA-12E6A8 as capture antibody and a horseradish peroxidase conjugated u-PA specific antibody for tagging. It recognized free and active site blocked rtcu- PA but not rtcu-PA in complex with rPAI-1 or with alpha 2-antiplasmin. This ELISA was used to monitor the generation of rtcu-PA during fibrin clot lysis with rscu-PA in human plasma. Addition of 5 micrograms/mL rscu-PA to 3 mL plasma containing a 0.2 mL 125I-fibrin labeled plasma clot caused 50% clot lysis in 62 +/- 13 minutes (mean +/- SD, n = 6), at which time 99 +/- 28 ng/mL rtcu-PA was detected but no fibrinogen breakdown had occurred. Fifty percent fibrinogen breakdown did occur only when rtcu-PA had reached a level of 1,000 +/- 270 ng/mL (at 150 +/- 21 minutes). rscu-PA, 2 micrograms/mL, induced 50% clot lysis in 160 +/- 41 minutes (n = 6); no fibrinogen degradation occurred within 4 hours and rtcu-PA levels did not exceed 80 ng/mL. In the absence of a fibrin clot, 5 micrograms/mL rscu-PA added to human plasma did not result in significant generation of rtcu-PA (less than 50 ng/mL after 4 hours) and no fibrinogen degradation was observed. These results indicate that clot lysis with rscu-PA in a plasma milieu does not require extensive systemic conversion of rscu-PA to rtcu-PA, and that fibrinogen degradation occurs secondarily to systemic conversion of rscu-PA to rtcu-PA.



1992 ◽  
Vol 67 (02) ◽  
pp. 239-247 ◽  
Author(s):  
H R Lijnen ◽  
P D Webb ◽  
B Van Hoef ◽  
F De Cock ◽  
J M Stassen ◽  
...  

SummaryRecombinant tissue-type plasminogen activator (rt-PA), produced by expression of the genomic t-PA DNA from the JMI-229 cell line, which is of rat origin, in the host cell line, was purified to homogeneity. JMI-229 rt-PA was obtained essentially as a single chain molecule which was quantitatively converted to a two-chain moiety by treatment with plasmin. The plasminogen activating potential of single chain JMI-229 rt-PA was 5-fold lower than that of commercially available human rt-PA (Actilyse®) in the absence of fibrin, but comparable in the presence of fibrin; it showed a concentration-dependent binding to fibrin, with a significantly more pronounced binding than Actilyse® at low fibrin concentration (85 ± 8% versus 20 ± 7% at 0.025 mg/ml fibrin; p = 0.004). In human plasma in the absence of fibrin, the concentrations of both single chain and two-chain JMI-229 rt-PA required to induce 50% fibrinogen degradation in 2 h, were about 15-fold higher than those of Actilyse®. Both single chain and two-chain forms of JMI-229 rt-PA and of Actilyse® induced a similar time- and concentration-dependent lysis of a 125I-fibrin-labeled plasma clot immersed in human plasma, in the absence of significant systemic fibrinolytic activation. Equally effective concentrations (causing 50% clot lysis in 2 h) were 0.11 or 0.10 pg/ml for single chain or two-chain JMI-229 rt-PA, as compared to 0.11 or 0.15 pg/ml for single chain or two-chain Actilyse®. Continuous infusion over 60 min of single chain JMI-229 rt-PA or Actilyse® in hamsters with a 125I-fibrin-labeled pulmonary embolus, revealed a very similar thrombolytic potency (clot lysis versus dose) and specific thrombolytic activity (clot lysis versus steady state plasma antigen level of t-PA). The initial plasma half-life following intravenous bolus injection of 0.10 mg/kg in hamsters was equally short for JMI-229 rt-PA or Actilyse® (1.2 or 1.4 min respectively).It is concluded that JMI-229 rt-PA has a higher fibrin-affinity and a higher fibrin-specificity in human plasma in the absence of fibrin than Actilyse®, but a comparable thrombolytic potency in a hamster pulmonary embolism model.



1992 ◽  
Vol 68 (02) ◽  
pp. 170-179 ◽  
Author(s):  
M Dewerchin ◽  
A-M Vandamme ◽  
P Holvoet ◽  
F De Cock ◽  
G Lemmens ◽  
...  

SummaryA recombinant chimeric plasminogen activator consisting of a humanized monoclonal antibody specific for cross-linked human fibrin (MA-15C5Hu) and a 32 kDa single-chain urokinase-type plasminogen activator (scu-PA-32k) comprising amino acids Leu144-Leu411, MA-15C5Hu/scu-PA-32k, was previously found to have a 12-fold higher fibrinolytic potency than recombinant scu-PA-32k towards a human plasma clot in a human plasma milieu in vitro (Vandamme et al., Eur J Biochem 1992; 205: 139–46). Therefore, the thrombolytic and pharmacokinetic properties of MA-15C5Hu/scu-PA-32k were compared with those of recombinant single-chain urokinase-type plasminogen activator (scu-PA) in 3 different venous thrombosis models in vivo. In hamsters with a pulmonary embolus consisting of a human plasma clot, the thrombolytic potency (% lysis per dose in mg/kg administered) of MA-15C5Hu/scu-PA-32k was 23-fold higher than that of scu-PA (p <0.0005). In rabbits with a jugular vein clot prepared from human plasma, the thrombolytic potency of MA-15C5Hu/scu-PA-32k was 11-fold higher than that of scu-PA (p = 0.012). In baboons with an autologous whole blood clot in the femoral vein, the chimera had a 5-fold higher thrombolytic potency than scu-PA. In all three animal species, the clearance of the chimera was 10- to 27-fold reduced as compared to scu-PA. The specific thrombolytic activity (% lysis per µg/ml steady-state plasma u-PA antigen) was increased up to 7-fold with MA-15C5Hu/scu-PA-32k as compared with scu-PA, which is indicative of targeting of the chimera to the clot. No fibrinogen breakdown or α2-antiplasmin depletion was observed during thrombolysis with the chimera.Thus, MA-15C5Hu/scu-PA-32k constitutes a recombinant chimeric plasminogen activator with a significantly enhanced thrombolytic potency in 3 different animal models of venous thrombosis.



1987 ◽  
Author(s):  
R S Rappaport ◽  
M R Blume ◽  
R L Vogel ◽  
M H Levner ◽  
P P Hung

There is mounting evidence from animal models and the clinic that combination thrombolytic therapy with tissue-type plasminogen activator (tPA) and single chain urokinase (scuPA) is synergistic. Yet, efforts to demonstrate synergism between these two plasminogen activators in vitro have met with discordant results. Collen et al (Thromb. Haemostasis, 56:35, 1986) reported an absence of synergism between these two agents on clot lysis in an in vitro plasma milieu when they were evaluated at molar ratios of 1:4 (tPA:scuPA and vice versa). Gurewich and Pannell (Thromb. Res., 44:217, 1986), however, reported a synergistic effect on fibrin-specific clot lysis in vitro when the agents were combined in concentrations exceeding molar ratios of 1:4 (tPA:scuPA). Here, we present evidence that synergism between tPA and scuPA may be demonstrated in vitro provided that the molar ratio of tPA to scuPA exceeds 1:4 and that the concentration of clot bound or unbound tPA is minimized. In order to achieve this experimental condition, the standard in vitro plasma clot lysis assay was modified. Human plasma clots were incubated first for a short time in plasma containing varying amounts of tPA. After incubation, the clots were washed thoroughly and reimmersed in plasma alone or in plasma containing varying amounts of scuPA or tPA. Under these conditions, lysis proceeded at a greater rate and to a greater extent when tPA clots were immersed in plasma containing an appropriate amount of scuPA than when they were immersed in plasma alone or in plasma containing appropriate amounts of tPA. Lysis of untreated clots or clots exposed first to scuPA and then to plasma containing varying amounts of scuPA proceeded far less efficiently with a characteristic lag. The enhanced lysis produced by tPA and scuPA obeyed the classical definition of synergy: the same biological effect can be obtained with two drugs together at algebraic fractional combinations of less than 1 (Berenbaum, M.C., Clin. Exp. Immunol., 28:1-18, 1977). Thus, conditions that more closely mimic the in vivo situation resulting from a bolus injection of tPA followed by infusion with scuPA, may provide a system for duplication of in vivo synergism in. vi tro and investigation of the mechanism thereof.



Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1864-1872 ◽  
Author(s):  
HR Lijnen ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

Abstract The relative contribution of several mechanisms to plasminogen activation and fibrin dissolution by urokinase-type plasminogen activator (u-PA) in vitro was quantitated. The activation of plasminogen by recombinant single chain u-PA (rscu-PA), by its two chain derivative (rtcu-PA) and by a plasmin-resistant mutant, rscu-PA- Glu158, obeys Michaelis-Menten kinetics with catalytic efficiencies of 0.00064, 0.046, and 0.00005 L/mumol.s for native plasminogen (Glu- plasminogen) and of 0.0061, 1.21, and 0.0004 L/mumol.s for partially degraded plasminogen (Lys-plasminogen). In a purified system consisting of a fibrin clot submerged in a plasminogen solution, the equi- effective doses (50% lysis in one hour) for rscu-PA, rtcu-PA, and rscu- PA-Glu158 were 16, 6.5, and 32,000 ng/mL for Glu-plasminogen and two- to fourfold lower for Lys-plasminogen. In a plasma milieu, 50% lysis in two hours was obtained for a plasma clot with 2.1 micrograms/mL rscu- PA, 0.5 micrograms/mL rtcu-PA, and greater than 200 micrograms/mL rscu- PA-Glu158 and for a purified fibrin clot with 1.3 micrograms/mL rscu-PA and 0.27 microgram/mL rtcu-PA. After predigestion of a purified fibrin clot with plasmin, the apparent potency of rscu-PA and rtcu-PA increased by 40% and 20%, respectively. In conclusion, rscu-PA has an intrinsic plasminogen activating potential that is only about 1% of that of rtcu-PA and that is 13 times higher than that of rscu-PA- Glu158. Conformational transition of Glu-plasminogen to Lys-plasminogen enhances its sensitivity to activation by all u-PA moieties ten- to 20- fold. Predigestion of fibrin clots with associated increased binding of plasminogen results in a minor apparent increase of the fibrinolytic potency of rscu-PA and rtcu-PA. The relative fibrinolytic potency of rtcu-PA is two to three orders of magnitude higher than that of rscu-PA- Glu158 but only two- to five-fold higher than that of rscu-PA, both in purified systems and in a plasma milieu. These results indicate that conversion of rscu-PA to rtcu-PA constitutes the primary mechanism of fibrin dissolution.



Sign in / Sign up

Export Citation Format

Share Document