scholarly journals Molecular analysis of beta zero-thalassemia intermedia in Sardinia

Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 823-827 ◽  
Author(s):  
R Galanello ◽  
E Dessi ◽  
MA Melis ◽  
M Addis ◽  
MA Sanna ◽  
...  

Abstract In this study we have carried out alpha- and beta-globin gene analysis and defined the beta-globin gene polymorphisms in a group of patients with thalassemia intermedia of Sardinian descent. A group of patients (109) with thalassemia major of the same origin served as control. Characterization of the beta-thalassemia mutation showed either a frameshift mutation at codon 6 or a codon 39 nonsense mutation. We found that homozygotes for the frameshift mutation at codon 6 or compound heterozygotes for this mutation and for the codon 39 nonsense mutation develop thalassemia intermedia more frequently than thalassemia major. The frameshift mutation at codon 6 was associated with haplotype IX that contains the C-T change at position -158 5′ to the G gamma globin gene implicated in high gamma chain production and thus the mild phenotype. In patients' homozygotes for codon 39 nonsense mutation, those with thalassemia intermedia more frequently had the two- gene deletion form of alpha-thalassemia, or functional loss of the alpha 2 gene as compared with those with thalassemia major. In a few siblings with thalassemia major and intermedia, the thalassemia intermedia syndrome correlated with the presence of the -alpha/-alpha genotype. No cause for the mild phenotype was detected in the majority of patients who had not inherited either haplotype IX or alpha- thalassemia.

Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 823-827 ◽  
Author(s):  
R Galanello ◽  
E Dessi ◽  
MA Melis ◽  
M Addis ◽  
MA Sanna ◽  
...  

In this study we have carried out alpha- and beta-globin gene analysis and defined the beta-globin gene polymorphisms in a group of patients with thalassemia intermedia of Sardinian descent. A group of patients (109) with thalassemia major of the same origin served as control. Characterization of the beta-thalassemia mutation showed either a frameshift mutation at codon 6 or a codon 39 nonsense mutation. We found that homozygotes for the frameshift mutation at codon 6 or compound heterozygotes for this mutation and for the codon 39 nonsense mutation develop thalassemia intermedia more frequently than thalassemia major. The frameshift mutation at codon 6 was associated with haplotype IX that contains the C-T change at position -158 5′ to the G gamma globin gene implicated in high gamma chain production and thus the mild phenotype. In patients' homozygotes for codon 39 nonsense mutation, those with thalassemia intermedia more frequently had the two- gene deletion form of alpha-thalassemia, or functional loss of the alpha 2 gene as compared with those with thalassemia major. In a few siblings with thalassemia major and intermedia, the thalassemia intermedia syndrome correlated with the presence of the -alpha/-alpha genotype. No cause for the mild phenotype was detected in the majority of patients who had not inherited either haplotype IX or alpha- thalassemia.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 601-605 ◽  
Author(s):  
MC Rosatelli ◽  
L Oggiano ◽  
G Battista Leoni ◽  
T Tuveri ◽  
A Di Tucci ◽  
...  

Abstract We investigated the molecular basis for a mild phenotype in a group of patients with beta + thalassemia originating from Northern Sardinia by definition of the beta-thalassemia mutation, alpha-globin mapping and beta-globin haplotype determination. In nine patients, we detected the compound heterozygous state for the -87 promoter mutation and the codon 39 nonsense mutation; in one patient, we detected the combination of the codon 39 nonsense mutation and beta + IVS-1 nt 6 mutation. These patients were either nontransfusion dependent for survival or became transfusion dependent later. We did not detect the -87 promoter mutation in any of 115 thalassemia major patients originating from the same part of Sardinia, investigated as controls. Heterozygotes for the - 87 promoter mutation showed statistically higher hemoglobin (Hb) levels and larger and better hemoglobinized RBCs as compared with heterozygotes for the codon 39 nonsense mutation. From these data, we conclude that the -87 promoter mutation is a mild thalassemia allele, able to produce a phenotype of intermediate severity even in combination with a beta degree-thalassemia mutant. The coinheritance of alpha-thalassemia or the -++-- 5′ subhaplotype in several cases may have contributed to development of the mild clinical picture. Characterization of the beta-thalassemia mutation in combination with alpha-globin mapping and haplotype analysis may allow a better estimate of the probability of a given clinical phenotype, thus permitting more accurate counseling.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 49
Author(s):  
Nur Imaniati Sumantri ◽  
Kenny Lischer ◽  
Dian Rachma Wijayanti ◽  
Tomy Abuzairi

Background: Mutation of the beta-globin gene (HBB) interferes with primary mRNA transcription, leading to beta-thalassemia disease. The IVS1nt1 and IVS1nt5 mutations were reported as two of the most prevalent intronic mutations associated with beta-thalassemia major. These mutations may affect the mRNA structure of the human beta-globin (HBB) gene. However, the mechanism by which variation in HBB alters the mRNA structure remains unclear. The objective of this study was to unveil the secondary and tertiary conformation difference of the mutants compared to the wildtype using in silico analysis. Methods: The sequence of HBB was obtained from Ensemble database and mutated manually at nucleotides 143 (IVS1nt1G>T) and 147 (IVS1nt5G>C). The RNA secondary and tertiary structure were performed by ViennaRNA Web Services and 3dRNA v2.0, respectively. Results and Discussion: The results revealed the unique folding characteristics of each mutations for the secondary and tertiary structures. Based on the structure, unwanted folding occurred in the IVS1nt1G>T and IVS1nt5G>C mRNA structures compared to the wild-type structure. This finding was supported by the results of centroid-based analysis and RNA structure analysis, indicating that the larger loops in IVS1nt1 and IVS1nt5 result in an unstable structure. Our study found that intronic mutations affect the mRNA structure of HBB by altering its folding mechanism.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 49
Author(s):  
Nur Imaniati Sumantri ◽  
Kenny Lischer ◽  
Dian Rachma Wijayanti ◽  
Tomy Abuzairi

Background: Mutation of the beta-globin gene (HBB) interferes with primary mRNA transcription, leading to beta-thalassemia disease. The IVS1nt1 and IVS1nt5 mutations were reported as two of the most prevalent intronic mutations associated with beta-thalassemia major. These mutations may affect the mRNA structure of the human beta-globin (HBB) gene. However, the mechanism by which variation in HBB alters the mRNA structure remains unclear. The objective of this study was to unveil the secondary and tertiary conformation difference of the mutants compared to the wildtype using in silico analysis. Methods: The sequence of HBB was obtained from Ensemble database and mutated manually at nucleotides 143 (IVS1nt1G>T) and 147 (IVS1nt5G>C). The RNA secondary and tertiary structure were performed by ViennaRNA Web Services and RNA Composer, respectively. Results and Discussion: The results revealed the unique folding characteristics of each mutations for the secondary and tertiary structures. Based on the structure, unwanted folding occurred in the IVS1nt1G>T and IVS1nt5G>C mRNA structures compared to the wild-type structure. This finding was supported by the results of centroid-based analysis and RNA structure analysis, indicating that the larger loops in IVS1nt1 and IVS1nt5 result in an unstable structure. Our study found that intronic mutations affect the mRNA structure of HBB by altering its folding mechanism.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-4
Author(s):  
Georgia L. Gregory ◽  
Beeke Wienert ◽  
Marisa Schwab ◽  
Billie Rachael Lianoglou ◽  
Roger P. Hollis ◽  
...  

Introduction: Alpha globin mutations are very common worldwide, and the severity of resulting anemia depends on the number and type of mutated alleles. While the 4 gene mutation (alpha thalassemia major, ATM) was previously deemed fatal except in rare cases, emerging evidence indicates that survival to birth and good postnatal outcomes are possible with in utero transfusions. We hypothesized that the embryonic zeta globin gene, which is expressed early in gestation prior to alpha globin, may compensate for the lack of alpha globin and that induction of zeta globin after it has naturally been silenced may become a new therapy for patients with ATM. Methods: We evaluated mutations in the UCSF international registry of patients with ATM to understand factors related to patient survival with and without in utero transfusions. We then engineered Human Umbilical Cord Derived Erythroid Progenitor Cells (HUDEP-2 cells) carrying the common SEA alpha globin deletion, in which zeta globin expression is preserved (H-SEA), as well as those on which the zeta globin genes were deleted (HBZ-/-) using CRISPR-Cas9. We evaluated the expression of alpha and zeta globins using qPCR, Western blot, and flow cytometry. We generated lentiviral vectors expressing zeta globin under the control of beta-globin promoters to examine changes in both zeta and alpha globin in a dynamic way. Results: None of the registry patients who survived to birth spontaneously (n=11) had a mutation that involves a concomitant deletion in zeta globin (such as the -FIL, -THAI, or -MEDII mutation), while alpha globin mutations extending into the zeta globin gene were found in 14 of 37 (38%) patients who were diagnosed prenatally, suggesting that the presence of zeta globin may play a role in the ability to survive to birth without fetal therapy. Interestingly, we found that H-SEA clones express higher levels of zeta globin than WT cells, as illustrated by quantitative real-time PCR (Fig 1A), Western blot (Fig 1B) and flow cytometry (Fig 1C). These cells also developed beta globin dimers due to excess unpaired beta-globin chains, as demonstrated by Western blotting with and without reducing agents, indicating that they are an appropriate cell model for ATM. We next generated HUDEP-2 clones lacking zeta globin (HBZ KO) and transduced these clones with lentiviral vectors expressing high levels of zeta globin (lenti-zeta) (Fig 1D). Western blotting revealed that increasing the levels of zeta globin in these cells resulted in decreased expression of alpha globin, suggesting reciprocal control between these genes (Fig 1E). Most importantly, we saw a reduction in toxic beta-globin dimers in H-SEA cells expressing high levels of zeta-globin after transduction with lenti-zeta, suggesting that zeta globin could functionally replace the missing alpha-globin (Fig 1 F,G). To understand transcriptomic differences in H-SEA cells that may result in increased zeta globin expression, we performed bulk RNA sequencing of wild type and H-SEA clones. We confirmed that zeta expression is significantly upregulated in H-SEA compared to wild type (log2 fold change of 4.25, p=2.24E-38). Pathway analysis of differentially expressed genes is ongoing. Conclusions: Our international patient registry suggests that expression of zeta globin may play a role in the spontaneous survival to birth in a subset of patients. Zeta globin expression is increased in the setting of H-SEA cells in vitro, and restoration of zeta expression by lentivirus results in a reduction of toxic beta globin dimers in these ATM cells. Furthermore, expressing zeta globin at high levels in H-WT cells decreased alpha globin expression, suggesting a reciprocal regulation of these two genes. This concept is similar to the relationship between fetal gamma and adult beta globins which has been exploited for therapeutic editing approaches in patients with beta-thalassemia. At this point, the natural repressor of zeta globin is not yet known, but our data suggests that a strategy of upregulating zeta globin could potentially be developed to mimic the ongoing trials of using the BCL11A repressor to induce gamma globin in patients with beta thalassemia and sickle cell disease. Disclosures Wienert: Integral Medicines: Current Employment. Kohn:Allogene Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Patents & Royalties, Research Funding. MacKenzie:Acrigen: Membership on an entity's Board of Directors or advisory committees; Ultragenyx: Research Funding.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 49
Author(s):  
Nur Imaniati Sumantri ◽  
Kenny Lischer ◽  
Dian Rachma Wijayanti ◽  
Tomy Abuzairi

Background: Mutation of the beta-globin gene (HBB) interferes with primary mRNA transcription, leading to beta-thalassemia disease. The IVS1nt1 and IVS1nt5 mutations were reported as two of the most prevalent intronic mutations associated with beta-thalassemia major. These mutations may affect the mRNA structure of the human beta-globin (HBB) gene. However, the mechanism by which variation in HBB alters the mRNA structure remains unclear. The objective of this study was to unveil the secondary and tertiary conformation difference of the mutants compared to the wildtype using in silico analysis. Methods: The sequence of HBB was obtained from Ensemble database and mutated manually at nucleotides 143 (IVS1nt1G>T) and 147 (IVS1nt5G>C). The RNA secondary and tertiary structure were performed by ViennaRNA Web Services and RNA Composer, respectively. Results and Discussion: The results revealed the unique folding characteristics of each mutations for the secondary and tertiary structures. Based on the structure, unwanted folding occurred in the IVS1nt1G>T and IVS1nt5G>C mRNA structures compared to the wild-type structure. This finding was supported by the results of centroid-based analysis and RNA structure analysis, indicating that the larger loops in IVS1nt1 and IVS1nt5 result in an unstable structure. Our study found that intronic mutations affect the mRNA structure of HBB by altering its folding mechanism.


2008 ◽  
Vol 119 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Giordana Feriotto ◽  
Francesca Salvatori ◽  
Alessia Finotti ◽  
Giulia Breveglieri ◽  
Marina Venturi ◽  
...  

Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1420-1423
Author(s):  
V Chan ◽  
TK Chan ◽  
YW Kan ◽  
D Todd

A new frameshift mutation due to an insertion of G between codon 14/15 of the beta-globin gene was found in two unrelated Chinese patients with Cooley's anemia. The first patient (W.S.) was homozygous for haplotype 5 (Chinese) and carried a codon 41/42 (four base pair deletion) mutant, while the second patient (C.K.) was homozygous for haplotype 2 (Chinese), and also had a codon 17 (A----T) nonsense mutation. Molecular cloning and M13 sequencing of the beta gene in patient W.S. revealed that the new mutant was found in a beta-globin gene framework type 3 (Asian). Direct sequencing was performed on polymerase chain reaction-amplified genomic DNA from patient C.K. With the new mutation, an additional BstNI or EcoRII recognition site is generated and the abnormal restriction fragment (134 basepair) can be directly visualized on polyacrylamide gel electrophoresis of the amplified genomic DNA.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1420-1423 ◽  
Author(s):  
V Chan ◽  
TK Chan ◽  
YW Kan ◽  
D Todd

Abstract A new frameshift mutation due to an insertion of G between codon 14/15 of the beta-globin gene was found in two unrelated Chinese patients with Cooley's anemia. The first patient (W.S.) was homozygous for haplotype 5 (Chinese) and carried a codon 41/42 (four base pair deletion) mutant, while the second patient (C.K.) was homozygous for haplotype 2 (Chinese), and also had a codon 17 (A----T) nonsense mutation. Molecular cloning and M13 sequencing of the beta gene in patient W.S. revealed that the new mutant was found in a beta-globin gene framework type 3 (Asian). Direct sequencing was performed on polymerase chain reaction-amplified genomic DNA from patient C.K. With the new mutation, an additional BstNI or EcoRII recognition site is generated and the abnormal restriction fragment (134 basepair) can be directly visualized on polyacrylamide gel electrophoresis of the amplified genomic DNA.


Sign in / Sign up

Export Citation Format

Share Document