scholarly journals Relationship between globin mRNA accumulation and commitment to terminal cell differentiation in inducer sensitive and resistant erythroleukemia variants

Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 302-306
Author(s):  
N Weich ◽  
PA Marks ◽  
RA Rifkind

Abstract The relationship between the kinetics of commitment to terminal cell differentiation and the rates of accumulation of globin mRNA has been examined during the induction of erythroid differentiation by polar/apolar chemical inducers in murine erythroleukemia cells (MELC), under conditions of more and less rapid commitment. Two differentiation inducers and three MELC variants have been studied. Hexamethylene bisacetamide (HMBA) initiates more rapid commitment than does dimethylsulfoxide (Me2SO). MELC variant DR10 is resistant to induction by Me2SO and responds sluggishly to HMBA, in comparison with the DS19- Sc9 variant. V3.17, an MELC variant resistant to low concentrations of vincristine, shows increased sensitivity to the inducers and an accelerated rate of commitment to terminal differentiation compared with DS19-Sc9. It is demonstrated that commitment and the actual expression of differentiation, as measured by the accumulation of alpha- , beta maj-, and beta min-globin mRNA, are temporally coordinated functions during induced differentiation of a transformed cell line by exposure to polar/apolar agents.

Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 302-306
Author(s):  
N Weich ◽  
PA Marks ◽  
RA Rifkind

The relationship between the kinetics of commitment to terminal cell differentiation and the rates of accumulation of globin mRNA has been examined during the induction of erythroid differentiation by polar/apolar chemical inducers in murine erythroleukemia cells (MELC), under conditions of more and less rapid commitment. Two differentiation inducers and three MELC variants have been studied. Hexamethylene bisacetamide (HMBA) initiates more rapid commitment than does dimethylsulfoxide (Me2SO). MELC variant DR10 is resistant to induction by Me2SO and responds sluggishly to HMBA, in comparison with the DS19- Sc9 variant. V3.17, an MELC variant resistant to low concentrations of vincristine, shows increased sensitivity to the inducers and an accelerated rate of commitment to terminal differentiation compared with DS19-Sc9. It is demonstrated that commitment and the actual expression of differentiation, as measured by the accumulation of alpha- , beta maj-, and beta min-globin mRNA, are temporally coordinated functions during induced differentiation of a transformed cell line by exposure to polar/apolar agents.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1662-1667 ◽  
Author(s):  
Y Fukuda ◽  
H Fujita ◽  
L Garbaczewski ◽  
S Sassa

The level of mRNA encoding beta-globin was examined in dimethyl sulfoxide (DMSO)-sensitive (DS), and DMSO-resistant (DR) murine erythroleukemia (MEL) cells. DR cells lack erythroid-specific delta- aminolevulinate (ALA) synthase (AL-AS-E), and fail to undergo erythroid differentiation following treatment with DMSO. Treatment of cells with DMSO markedly increased ALAS-E mRNA in DS cells, while the same treatment downregulated the nonspecific ALA synthase (ALAS-N) mRNA levels in both DS and DR cells. The levels of beta-globin mRNA, heme content, and hemoglobin in DS cells increased, while those in DR cells decreased following treatment with DMSO. Treatment of DR cells with hemin caused an increase in beta-globin mRNA and hemoglobin, and partially restored the DMSO-mediated suppression of beta-globin mRNA and hemoglobin synthesis. DMSO treatment decreased heme oxygenase (HO) mRNA in hemin-treated DS cells, but not in hemin-treated DR cells. These findings indicate that heme is necessary for accumulation of the beta-globin transcript during erythroid differentiation, and that hemin- mediated HO induction becomes markedly downregulated in differentiated erythroid cells, presumably because less free heme is available for HO induction by a greater demand for the synthesis of hemoglobin.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1662-1667 ◽  
Author(s):  
Y Fukuda ◽  
H Fujita ◽  
L Garbaczewski ◽  
S Sassa

Abstract The level of mRNA encoding beta-globin was examined in dimethyl sulfoxide (DMSO)-sensitive (DS), and DMSO-resistant (DR) murine erythroleukemia (MEL) cells. DR cells lack erythroid-specific delta- aminolevulinate (ALA) synthase (AL-AS-E), and fail to undergo erythroid differentiation following treatment with DMSO. Treatment of cells with DMSO markedly increased ALAS-E mRNA in DS cells, while the same treatment downregulated the nonspecific ALA synthase (ALAS-N) mRNA levels in both DS and DR cells. The levels of beta-globin mRNA, heme content, and hemoglobin in DS cells increased, while those in DR cells decreased following treatment with DMSO. Treatment of DR cells with hemin caused an increase in beta-globin mRNA and hemoglobin, and partially restored the DMSO-mediated suppression of beta-globin mRNA and hemoglobin synthesis. DMSO treatment decreased heme oxygenase (HO) mRNA in hemin-treated DS cells, but not in hemin-treated DR cells. These findings indicate that heme is necessary for accumulation of the beta-globin transcript during erythroid differentiation, and that hemin- mediated HO induction becomes markedly downregulated in differentiated erythroid cells, presumably because less free heme is available for HO induction by a greater demand for the synthesis of hemoglobin.


Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2895-2901 ◽  
Author(s):  
Luı́sa Romão ◽  
Ângela Inácio ◽  
Susana Santos ◽  
Madalena Ávila ◽  
Paula Faustino ◽  
...  

Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2575-2583 ◽  
Author(s):  
Khalid Hafid-Medheb ◽  
Yvette Augery-Bourget ◽  
Marie-Nathalie Minatchy ◽  
Nicole Hanania ◽  
Jacqueline Robert-Lézénès

Bcl-XL is essential for the survival and normal maturation of erythroid cells, especially at the late stage of erythroid differentiation. It remains unclear whether Bcl-XL serves only as a survival factor for erythroid cells or if it can induce a signal for differentiation. We have previously shown that dimethyl sulfoxide (DMSO) induction of erythroid differentiation in murine erythroleukemia (MEL) cells correlates with delay of apoptosis and specific induction of Bcl-XL. In this study, we investigate the contribution of Bcl-2 and Bcl-XL to survival and erythroid differentiation by generating stable MEL transfectants expressing these antiapoptotic regulators. Overexpression of Bcl-2 completely prevented apoptosis of MEL cells before and after DMSO induction, whereas overexpression of Bcl-XL only delayed it. Overexpression of Bcl-2 or Bcl-XL neither induced spontaneous erythroid differentiation nor accelerated DMSO-induced differentiation. Inhibition of Bcl-XL by antisense transcripts accelerated apoptosis in DMSO-treated MEL cells and blocked the synthesis of hemoglobin without altering the growth arrest associated with terminal erythroid differentiation. An antisense oligonucleotide to Bcl-XL did not induce apoptosis in MEL cells overexpressing Bcl-2 but greatly decreased their hemoglobin synthesis when treated with DMSO, suggesting that Bcl-XL is necessary for erythroid differentiation independently of its antiapoptotic function. Importantly, Bcl-XL antisense transcripts prevented heme synthesis but not globin mRNA induction in DMSO-treated MEL cells. Furthermore, inhibition of hemoglobin synthesis by Bcl-XLantisense was reversed by addition of exogenous hemin. Finally, Bcl-XL localized to mitochondria during MEL erythroid differentiation, suggesting that it may mediate a critical mitochondrial transport function related to heme biosynthesis.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1153-1156 ◽  
Author(s):  
JO Hensold ◽  
PS Swerdlow ◽  
DE Housman

Abstract Murine erythroleukemia cells are useful for studying the regulation of erythroid differentiation since these malignant pronormoblasts differentiate to orthochromatic normoblasts when treated with a variety of inducing agents. Changes in chromatin proteins have been described following inducer exposure. The significance of these changes, which are greatest in terminally differentiated cells remains unknown. Ubiquitin is a highly conserved 8.5 kilodalton peptide that is covalently linked to up to 10% of histone H2A. We demonstrate that following exposure of MEL cells to inducers of differentiation, a transient increase in ubiquitination of H2A occurs. This change is coincident with the onset of differentiation. This result suggests that ubiquitination of H2A may have a role in the nuclear changes necessary for erythroleukemic cell differentiation.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1153-1156
Author(s):  
JO Hensold ◽  
PS Swerdlow ◽  
DE Housman

Murine erythroleukemia cells are useful for studying the regulation of erythroid differentiation since these malignant pronormoblasts differentiate to orthochromatic normoblasts when treated with a variety of inducing agents. Changes in chromatin proteins have been described following inducer exposure. The significance of these changes, which are greatest in terminally differentiated cells remains unknown. Ubiquitin is a highly conserved 8.5 kilodalton peptide that is covalently linked to up to 10% of histone H2A. We demonstrate that following exposure of MEL cells to inducers of differentiation, a transient increase in ubiquitination of H2A occurs. This change is coincident with the onset of differentiation. This result suggests that ubiquitination of H2A may have a role in the nuclear changes necessary for erythroleukemic cell differentiation.


Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939 ◽  
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Abstract Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2895-2901 ◽  
Author(s):  
Luı́sa Romão ◽  
Ângela Inácio ◽  
Susana Santos ◽  
Madalena Ávila ◽  
Paula Faustino ◽  
...  

Abstract Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.


Sign in / Sign up

Export Citation Format

Share Document