scholarly journals Stability of alpha and beta globin messenger RNA during induced differentiation of mouse erythroleukemia cells

Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.

Blood ◽  
1979 ◽  
Vol 54 (4) ◽  
pp. 933-939 ◽  
Author(s):  
R Gambari ◽  
RA Rifkind ◽  
PA Marks

Abstract Murine erythroleukemia cells (MELC) are induced to express erythroid differentiation when cultured with hexamethylene bisacetamide (HMBA). Newly synthesized alpha and beta globin mRNA are both relatively stable, half-life (t1/2) greater than 50 hr, early in the course of induced differentiation. In fully induced cells there is a decrease in stability of both newly synthesized alpha and beta globin mRNA. The decay of alpha mRNA is faster, (t 1/2, 10--12 hr) than beta globin mRNA (t1/2, 20--22 hr). Thus, differences in stability of alpha and beta globin mRNA plays a role in determining the ratio of alpha to beta mRNA content in differentiated erythroid cells.


1994 ◽  
Vol 14 (11) ◽  
pp. 7195-7203
Author(s):  
H Kiyokawa ◽  
V M Richon ◽  
R A Rifkind ◽  
P A Marks

Differentiation of murine erythroleukemia cells induced by hexamethylene bisacetamide (HMBA) is associated with accumulation of underphosphorylated retinoblastoma protein (pRB) and an increase in retinoblastoma (RB) gene expression. Here we show that HMBA causes a rapid decrease in the level of cyclin-dependent kinase 4 (cdk4) protein. This decrease results from decreased stability of the protein, while the rate of synthesis of the protein is not affected by HMBA. The decrease in the level of cdk4 protein is followed by suppression of the pRB kinase activity associated with cdk4. Cyclin D3, which can bind and activated cdk4, is increased in HMBA-induced cells and is found in complex with pRB and the transcription factor E2F. In uninduced cells cyclin D3 complexes with pRB and E2F are barely detected. At the later stages of differentiation, MEL cells become arrested in G1 and cdk2 kinase activity is suppressed; this is accompanied by a decrease in the level of cyclin A and cdk2 proteins. Cells transfected with cdk4, which continue to overexpress cdk4 protein during culture with HMBA, are resistant to HMBA-induced differentiation. In contrast, overexpression of cdk2 protein does not inhibit induced differentiation. These findings suggest that suppression of cdk4 is a critical event in the pathway leading to terminal differentiation of erythroleukemia cells.


1988 ◽  
Vol 8 (4) ◽  
pp. 1725-1735
Author(s):  
M A Bender ◽  
A D Miller ◽  
R E Gelinas

Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 783-792 ◽  
Author(s):  
B Gillo ◽  
YS Ma ◽  
AR Marks

Abstract Murine erythroleukemia cells (MELC) have served as a model for examining the regulation of erythroid differentiation. However, the role of Ca2+ in the signal transduction pathways regulating differentiation remains unclear. To begin to address this uncertainty we have characterized the regulation of cytoplasmic Ca2+ and the possible role of calcium channels during induced differentiation in MELC. MELC can be induced to terminal differentiation using the polar/apolar compound hexamethylene bisacetamide (HMBA). We found that HMBA stimulated Ca2+ influx within 3 to 6 minutes and that Ca2+ entry was required but not sufficient for MELC growth and differentiation. Nifedipine (1 to 10 mumol/L), a calcium channel antagonist, blocked HMBA-induced Ca2+ influx and inhibited differentiation by approximately 60%. Depolarization of the MELC membrane did not induce Ca2+ influx and whole-cell patch-clamp recordings failed to detect a voltage-activated Ca2+ current, suggesting that MELC do not express detectable levels of a functional voltage-dependent calcium channel (VDCC). However, a cDNA probe encoding a portion of the alpha 1 subunit of the cardiac VDCC detected an approximately 8-kb mRNA on Northern blots of total MELC RNA. Taken together, these data show that Ca2+ influx is an early event associated with HMBA-induced differentiation in MELC, blockade of this calcium influx inhibits induced differentiation, and a voltage- insensitive dihydropyridine-sensitive calcium channel may be involved in Ca2+ influx in MELC.


1988 ◽  
Vol 8 (4) ◽  
pp. 1725-1735 ◽  
Author(s):  
M A Bender ◽  
A D Miller ◽  
R E Gelinas

Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1662-1667 ◽  
Author(s):  
Y Fukuda ◽  
H Fujita ◽  
L Garbaczewski ◽  
S Sassa

The level of mRNA encoding beta-globin was examined in dimethyl sulfoxide (DMSO)-sensitive (DS), and DMSO-resistant (DR) murine erythroleukemia (MEL) cells. DR cells lack erythroid-specific delta- aminolevulinate (ALA) synthase (AL-AS-E), and fail to undergo erythroid differentiation following treatment with DMSO. Treatment of cells with DMSO markedly increased ALAS-E mRNA in DS cells, while the same treatment downregulated the nonspecific ALA synthase (ALAS-N) mRNA levels in both DS and DR cells. The levels of beta-globin mRNA, heme content, and hemoglobin in DS cells increased, while those in DR cells decreased following treatment with DMSO. Treatment of DR cells with hemin caused an increase in beta-globin mRNA and hemoglobin, and partially restored the DMSO-mediated suppression of beta-globin mRNA and hemoglobin synthesis. DMSO treatment decreased heme oxygenase (HO) mRNA in hemin-treated DS cells, but not in hemin-treated DR cells. These findings indicate that heme is necessary for accumulation of the beta-globin transcript during erythroid differentiation, and that hemin- mediated HO induction becomes markedly downregulated in differentiated erythroid cells, presumably because less free heme is available for HO induction by a greater demand for the synthesis of hemoglobin.


1983 ◽  
Vol 3 (2) ◽  
pp. 229-232 ◽  
Author(s):  
H R Profous-Juchelka ◽  
R C Reuben ◽  
P A Marks ◽  
R A Rifkind

The mechanism responsible for the accumulation of newly synthesized alpha- and beta-globin mRNA in the cytoplasm of induced murine erythroleukemia cells was examined by nuclear mRNA nascent chain elongation (run-off transcription). Hexamethylenebisacetimide, a potent inducer of murine erythroleukemia cell differention, induced high levels of both alpha- and beta-globin gene transcription within 48 to 72 h in culture. Butyric acid, a modest inducer of murine erythroleukemia cells, induced a somewhat lower level of globin gene transcription. With both inducers, alpha-globin transcriptional rates exceeded those of beta-globin. Hemin, on the other hand, showed no detectable increase over the basal rate observed in uninduced cells, even at a time (48 h) when newly synthesized globin mRNA was accumulating in the cytoplasm. These results suggest that there are at least two mechanisms responsible for regulating alpha- and beta-globin structural gene expression in induced murine erythroleukemia cells and that the mechanisms involved are inducer dependent. Hexamethylenebisacetimide and butyric acid increase the rate at which globin genes are transcribed, but hemin appears to allow constitutive levels of transcripts to accumulate.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2624-2631 ◽  
Author(s):  
F Paoletti ◽  
AM Vannucchi ◽  
A Mocali ◽  
R Caporale ◽  
SA Burstein

Friend murine erythroleukemia cells (MELCs) have been reevaluated in terms of their nature and potential pathways of differentiation. MELC induced with 5 mmol/L hexamethylene bisacetamide (HMBA), in addition to expression of known markers of the erythroid phenotype, were also found to exhibit traits of the megakaryocytic lineage. Erythroid differentiation was shown by the typical synthesis and accumulation of hemoglobin (Hb); megakaryoblastoid differentiation of MELCs upon induction was shown by increased specific activity of acetylcholinesterase (AChE). Incubation of MELCs with 5 mmol/L HMBA in RPMI supplemented with 1% fetal calf serum (FCS) (instead of the usual 5%), induced cells to selectively express high levels of AChE (up to approximately 170 mU/mg protein) with little activation of Hb synthesis (less than 5% B+ cells). The increase in AChE levels was a general phenomenon affecting the whole cell population and approached its maximum within 3 days of incubation with the inducer. Subsequently, MELCs become committed to terminal division, undergoing growth arrest and expression of the megakaryocytic phenotype even after the removal of HMBA. There were no appreciable changes of basal AChE levels in MELCs that were either made resistant to HMBA or treated with 0.1 mmol/L hemin that activated differentiated erythroid function without commitment. Phorbol 12-myristate 13-acetate (PMA), known to repress induced Hb synthesis in these cells, did not prevent the full increase in AChE when incubated with MELCs 2 days before HMBA addition. HMBA-induced MELCs always underwent AChE increase that was more or less pronounced depending on the low or high serum content in culture, respectively. Conversely, Hb expression was permitted only when MELCs were transferred in the late phase or at the end of commitment from low to high serum media. Variations of FCS content in culture media proved to be a simple and reliable approach to change the MELC response to inducers and to modulate expression of either megakaryocytic or mixed erythromegakaryocytic phenotype. These findings suggested that MELC might be considered, at least, as a bipotential model of differentiation to be used for studies on regulation of either megakaryocytic or erythroid markers and on competition between the two hematopoietic lineages. In this regard, it was intriguing that AChE levels attained under selective induction (low serum) were always higher than under conditions allowing coexpression of both AChE and Hb (high serum). Moreover, MELCs were also found to bind the specific rat-antimouse platelet monoclonal antibody 4A5.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document