differentiation induction
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Benson Koh ◽  
Nadiah Sulaiman ◽  
Sharifah Nursyazwani Shahirah Wan Ismadi ◽  
Roszalina Ramli ◽  
Siti Salmiah Mohd Yunus ◽  
...  

Abstract Background In the area of oral and maxillofacial surgery, regenerative endodontics aims to present alternative options to conventional treatment strategies. With continuous advances in regenerative medicine, the source of cells used for pulp tissue regeneration is not only limited to mesenchymal stem cells as the non-mesenchymal stem cells have shown capabilities too. In this review, we are systematically assessing the recent findings on odontoblastic differentiation induction with scaffold and non-scaffold approaches. Methods A comprehensive search was conducted in Pubmed, and Scopus, and relevant studies published between 2015 and 2020 were selected following the PRISMA guideline. The main inclusion criteria were that articles must be revolving on method for osteoblast differentiation in vitro study. Therefore, in vivo and human or animal clinical studies were excluded. The search outcomes identified all articles containing the word “odontoblast”, “differentiation”, and “mesenchymal stem cell”. Results The literature search identified 99 related studies, but only 11 articles met the inclusion criteria. These include 5 odontoblastic differentiation induction with scaffold, 6 inductions without scaffolds. The data collected were characterised into two main categories: type of cells undergo odontoblastic differentiation, and odontoblastic differentiation techniques using scaffolds or non-scaffold. Conclusion Based on the data analysis, the scaffold-based odontoblastic induction method seems to be a better option compared to the non-scaffold method. In addition of that, the combination of growth factors in scaffold-based methods could possibly enhance the differentiation. Thus, further detailed studies are still required to understand the mechanism and the way to enhance odontoblastic differentiation.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Wen Hou ◽  
Zhen-Ya Wang ◽  
Jing Lin ◽  
Wei-Min Chen

Abstract Differentiation therapy has been successfully applied clinically in cases of acute promyelocytic leukemia (APL), but few differentiation-induction agents other than all-trans retinoic acid (ATRA) have been discovered clinically. Based on our previously reported neuritogenic differentiation activity of synthetic dimeric derivatives of securinine, we explored the leukemia differentiation-induction activity of such as compound, SN3-L6. It was found that SN3-L6 induces transdifferentiation of both acute myeloid leukemia (AML) and chronic myelogenous leukemia (CML) cells but unexpectedly, a new transdifferentiation pathway from APL cells to morphologically and immunologically normal megakaryocytes and platelets were discovered. SN3-L6 fails to induce transdifferentiation of ATRA–produced mature granulocytes into megakaryocytes, indicating its selectivity between mature and immature cells. SN3-L6 induces CML K562 cells to transdifferentiate into apoptotic megakaryocytes but without platelet formation, indicating a desirable selectivity between different leukemia cells. Our data illuminate a differentiation gap between AML cells and platelets, and promises applications in leukemia differentiation therapy strategy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-26
Author(s):  
Hanying Wang ◽  
Xin He ◽  
Feiteng Huang ◽  
Haojie Dong ◽  
Wei Chen ◽  
...  

The success of all-trans retinoid acid (ATRA) in acute promyelocytic leukemia (APL) pioneered the concept of differentiation therapy. However, comparable approaches to overcome differentiation blockage for non-APL acute myeloid leukemia (AML) are hampered by lack of an effective drug discovery platform. Recently, we analyzed gene signatures of compounds (ATRA, arsenic trioxide, zalcitabine, and sodium butyrate) that trigger myeloid differentiation in the NCI-60 collection datasets and identified CD38 as the top gene upregulated by differentiation induction. We next initiated an in silico screen in the DTP database of >20,000 compounds to identify compounds that increase CD38 levels. Among those retrieved from "CellMiner" with CD38 as input, we assessed the top 193 available from NCI (r>0.6, p=0) for effects on differentiation utilizing a conditional murine myeloid differentiation-arrest model overexpressing estrogen receptor-HoxA9 (ER-HoxA9) fusion proteins (Cell, 2016). We identified NSC755985 (Nelarabine, NEL) in that screen. NEL is an orphan drug approved to treat relapsed or refractory T-cell acute lymphoblastic leukemia (ALL). NEL at clinically achievable doses (Cmax: 6.73 μM~ 26.91 μM, at a proposed adult dosing schedule of 1,500 mg/m2/day) markedly induced primary AML cell differentiation and death while sparing normal hematopoietic cells (AML vs normal, IC50: 14.7 ± 4.3 μM, n=7, vs 45.3 ± 1.3 μM, n=3), suggesting a therapeutic window in AML. Ex vivo NEL treatment compromised BM engraftment of CD34+ cells from one primary AML specimen in immunodeficient NSG mice at 12 weeks post-transplant (human CD45+ cells in BM: NEL 0.73% vs vehicle 33.42%, n=6/group, p<0.01). NEL administration in vivo (130 mg/kg/day, i.v. for 5 consecutive days) reduced leukemic burden of NSG mice xenografted with luciferase-expressing U937 cells (Radiance: NEL 2.83×107 vs vehicle 1.65×108 photons/s/cm2, n=9/group,p<0.01) and extended mouse survival. Transcriptome analyses in U397 cells and primary AML specimens revealed that NEL treatment upregulated RAS-related pathways. NEL-elicited RAS activation was confirmed by pull-down assay using a GST-Raf1-RBD affinity probe, followed by blotting with a pan-RAS antibody. We performed functional analysis by infecting ER-HoxA9 cells with lentiviral vector expressing oncogenic RAS and observed enhanced myeloid differentiation, as evidenced by increased CD11b/GFP levels relative to MOCK-infected controls. Given that NEL's active metabolite Ara-GTP perturbs guanine nucleotide metabolism, we asked if NEL-evoked RAS activation was associated with accrual of intracellular GTP. HPLC/MS analyses of U937 cells showed that NEL treatment resulted in a marked increase in GTP (approximately 5-fold higher than baseline at sub-millimolar levels) which was secondary to Ara-GTP. Importantly, either electroporation of GTP into U937 cells or indirect introduction of GTP by addition of guanine utilizing purine salvage pathways activated RAS and recapitulated differentiation induction phenotypes. To determine whether AML cells with higher RAS activity exhibited greater NEL sensitivity, we pretreated U937 cells with a RAS agonist KRA-553 or ectopically expressed RAS mutants and observed enhanced NEL inhibitory effects in both cases. We also observed enhanced vulnerability to NEL treatment in MLL-AF9 transformed murine hematopoietic cells from KrasLox-Stop-Lox (LSL) G12D/+/Vav-Cre mice (Blood, 2009) versus Cre+ counterparts. Relevant to AML line THP-1 which is poorly responsive to NEL (IC50>100 µM), we observed extremely low levels of Ara-GTP, no GTP increase or RAS hyperactivation after NEL treatment; Ara-GTP is inactivated by SAM domain and HD domain-containing protein 1 (SAMHD1), a dNTP hydrolase, whose high expression reportedly underlies NEL resistance in T-ALL. Indeed, SAMHD1 deletion remarkably increased RAS activity in THP-1 cells treated with NEL, thereby fully reversing NEL resistance. Our study provides a preclinical basis for testing NEL efficacy in a large cohort of AML patients, given that RAS activity is generally high in AML, or even against other malignancies harboring RAS mutations, which are considered "undruggable". Additionally, further study to test whether SAMHD1 inhibition enhances NEL efficacy against RAS active cancers is warranted. Disclosures Marcucci: Pfizer: Other: Research Support (Investigation Initiated Clinical Trial); Novartis: Speakers Bureau; Takeda: Other: Research Support (Investigation Initiated Clinical Trial); Iaso Bio: Membership on an entity's Board of Directors or advisory committees; Merck: Other: Research Support (Investigation Initiated Clinical Trial); Abbvie: Speakers Bureau. Sykes:Clear Creek Bio: Current equity holder in private company, Other: co-founder.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Toru Momozane ◽  
Eriko Fukui ◽  
Soichiro Funaki ◽  
Makoto Fujii ◽  
Yuhei Kinehara ◽  
...  

Regenerative medicine has continued to progress for lung biology and lung diseases. Efforts have focused on a variety of different applications for pluripotent stem cells. Several groups have reported successful methods for inducing differentiation of induced pluripotent stem cells (iPSCs) into the airway epithelium such as alveolar epithelium type II (ATII). However, differentiation efficiency varies among reports and improvements are needed. In the present paper, we propose a novel method for elimination of residual undifferentiated murine iPSCs using JQ1, a potent inhibitor of bromodomain (BRD) and extraterminal domain (BET) family proteins, for efficient differentiation into ATII. First, the murine iPSC line 20D-17 was induced to differentiate into ATII over a period of 26 days (days 0-26) using previously reported embryoid body seeding and stepwise differentiation methods. mRNA expressions of differentiation markers including surfactant protein C (Sftpc) were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) results, and 17% of the cells were shown positive for prosurfactant protein C (proSPC) in flow cytometry analysis. Next, those cells were cultured three-dimensionally in Matrigel for an additional 14 days (days 26-40), during which JQ1 was added for 4 days (days 28-32) to remove residual undifferentiated iPSCs. As a result, on day 40, the mRNA expression level of Sftpc in the three-dimensional culture was maintained at the same level as on day 26 and shown to be further increased by the addition of JQ1, with 39% of the cells found to express proSPC, showing that differentiation efficiency could be further increased. Three-dimensional culture with BRD4 inhibition by JQ1 improved the differentiation induction efficiency to ATII by removing residual undifferentiated murine iPSCs during the differentiation induction process.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 525 ◽  
Author(s):  
Chien-Huang Liao ◽  
I-Chun Lai ◽  
Hui-Ching Kuo ◽  
Shuang-En Chuang ◽  
Hsin-Lun Lee ◽  
...  

Malignant glioma (MG) is a poor prognostic brain tumor with inevitable recurrence after multimodality treatment. Searching for more effective treatment is urgently needed. Differentiation induction via epigenetic modification has been proposed as a potential anticancer strategy. Natural products are known as fruitful sources of epigenetic modifiers with wide safety margins. We thus explored the effects of oligo-fucoidan (OF) from brown seaweed on this notion in MG cells including Grade III U87MG cells and Grade IV glioblastoma multiforme (GBM)8401 cells and compared to the immortalized astrocyte SVGp12 cells. The results showed that OF markedly suppress the proliferation of MG cells and only slightly affected that of SVGp12 cells. OF inhibited the protein expressions of DNA methyltransferases 1, 3A and 3B (DNMT1, 3A and 3B) accompanied with obvious mRNA induction of differentiation markers (MBP, OLIG2, S100β, GFAP, NeuN and MAP2) both in U87MG and GBM8401 cells. Accordingly, the methylation of p21, a DNMT3B target gene, was decreased by OF. In combination with the clinical DNMT inhibitor decitabine, OF could synergize the growth inhibition and MBP induction in U87MG cells. Appropriated clinical trials are warranted to evaluate this potential complementary approach for MG therapy after confirmation of the effects in vivo.


Sign in / Sign up

Export Citation Format

Share Document