scholarly journals Human platelet aggregation by murine monoclonal antiplatelet antibodies is subtype-dependent

Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1792-1800 ◽  
Author(s):  
S De Reys ◽  
C Blom ◽  
B Lepoudre ◽  
PJ Declerck ◽  
M De Ley ◽  
...  

Abstract Twenty murine monoclonal antibodies (MoAbs) generated against different human platelet antigens induced clumping of human platelets in plasma and buffer. Whereas one MoAb could agglutinate platelets, clumping for 19 MoAbs was blocked by metabolic inhibitors, indicating that these induce platelet activation. Fifteen MoAbs were of IgG1, two of IgG2a, and two of IgG2b subtype. F(ab')2 fragments of these did not evoke an aggregatory response, but specifically inhibited aggregations by and binding of their respective intact MoAbs to platelets. Single-platelet counting technology indicated that the MoAbs bind through their antigen- binding and Fc domains mainly to the surface of the same platelet, rather than cause interplatelet-binding. Despite these similarities, the mechanism of action was nevertheless subtype-dependent. Aggregation induced by all IgG1 antibodies could consistently be prevented by blocking the Fc gamma II-receptor, whereas aggregations induced by all IgG2 antibodies still occurred with blocked Fc-receptor, provided functional complement was present. We therefore conclude that platelet activation by MoAb-binding is initiated by antigen recognition followed by an Fc domain-dependent step, which involves the Fc gamma II-receptor for IgG1-type MoAbs and complement-binding for IgG2-type MoAbs. Thus, antibodies of different subtypes can aggregate platelets via different pathways.

Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1792-1800 ◽  
Author(s):  
S De Reys ◽  
C Blom ◽  
B Lepoudre ◽  
PJ Declerck ◽  
M De Ley ◽  
...  

Twenty murine monoclonal antibodies (MoAbs) generated against different human platelet antigens induced clumping of human platelets in plasma and buffer. Whereas one MoAb could agglutinate platelets, clumping for 19 MoAbs was blocked by metabolic inhibitors, indicating that these induce platelet activation. Fifteen MoAbs were of IgG1, two of IgG2a, and two of IgG2b subtype. F(ab')2 fragments of these did not evoke an aggregatory response, but specifically inhibited aggregations by and binding of their respective intact MoAbs to platelets. Single-platelet counting technology indicated that the MoAbs bind through their antigen- binding and Fc domains mainly to the surface of the same platelet, rather than cause interplatelet-binding. Despite these similarities, the mechanism of action was nevertheless subtype-dependent. Aggregation induced by all IgG1 antibodies could consistently be prevented by blocking the Fc gamma II-receptor, whereas aggregations induced by all IgG2 antibodies still occurred with blocked Fc-receptor, provided functional complement was present. We therefore conclude that platelet activation by MoAb-binding is initiated by antigen recognition followed by an Fc domain-dependent step, which involves the Fc gamma II-receptor for IgG1-type MoAbs and complement-binding for IgG2-type MoAbs. Thus, antibodies of different subtypes can aggregate platelets via different pathways.


1989 ◽  
Vol 62 (03) ◽  
pp. 955-961 ◽  
Author(s):  
Ian S Watts ◽  
Rebecca J Keery ◽  
Philip Lumley

SummaryWe have investigated the effect of two procedures that modify human platelet surface membrane glycoprotein (Gp) IIb and IIIa complexes upon whole blood platelet aggregation to a range of agonists. (A) Irreversible disruption of complexes by temporary (30 min) Ca2+-deprivation with EGTA at 37° C. (B) Binding of a monoclonal antibody M148 to the complex. EGTA exposure abolished aggregation to ADP, adrenaline and PAF. In contrast, full aggregation curves to collagen and U-46619 could still be established. EGTA exposure reduced M148 binding to platelets by 80%. Excess M148 abolished aggregation to ADP, PAF, collagen and U-46619. However, upon removal of unbound antibody from platelets full aggregation curves to collagen and U-46619 but not to ADP and PAF could be re-established. Thus human platelet aggregation to ADP, PAF and adrenaline appears absolutely dependent upon surface membrane GpIIb/IIIa complexes. In contrast, collagen and U-46619 cause expression of an additional distinct pool of Gp complexes inaccessible to EGTA and M148 in unstimulated platelets which is intimately involved in aggregation to these agonists.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1112-1119 ◽  
Author(s):  
LK Jennings ◽  
DR Phillips ◽  
WS Walker

Abstract Hybridomas secreting monoclonal antibodies (MoAbs) to human platelet membrane glycoprotein IIb (GPIIb) were prepared by fusing cells of a mouse myeloma line to spleen cells from a BALB/c mouse immunized with purified GPIIb. Six of the hybridomas secreted MoAbs that recognized epitopes on the 23,000-dalton, disulfide-linked subunit of GPIIb, GPIIb beta. All six of these MoAbs agglutinated platelets in the absence of calcium. The agglutination titers of three of the MoAbs, however, were enhanced between 2 and 6 log2 dilutions when titrated in the presence of mmol/L of calcium. The enhancement in titer was the result of MoAb- induced platelet activation followed by platelet aggregation, a reaction that could also be initiated by the monovalent Fab fragments prepared from one of the MoAbs. The MoAbs did not significantly agglutinate platelets from patients with Glanzmann's thrombasthenia, confirming biochemical evidence that there is a paucity of GPIIb beta in the membranes of these cells. Our results show that MoAbs to epitopes on GPIIb beta initiate distinct platelet responses; therefore, they should be useful for studying the ways in which regions of surface glycoproteins are involved in platelet-platelet interactions. In addition, these reagents may prove of value in diagnosing and typing patients with Glanzmann's thrombasthenia.


1981 ◽  
Author(s):  
N J Cusack ◽  
S M O Hourani

ADP induces human platelet aggregation and inhibits the stimulation of platelet adenylate cyclase by prostaglandin E1 (PGE1), but analogues of ADP in which the diphosphate group is modified retain only weak aggregating activity. However, ADP-β-S, an ADP analogue in which a terminal phosphate oxygen is replaced by sulphur, is known to be equipotent with ADP as an inhibitor of PGE1-stimulated adenylate cyclase in purified human platelet membranes. We therefore tested ADP-β-S on intact human platelets. ADP-β-S induced human platelet aggregation and inhibited PGE1-stimulated adenylate cyclase, but in botn cases was less potent than ADP and only achieved 75% and 50% respectively of the maximal effects of ADP. Aggregation induced by ADP-β-S was competitively inhibited by ATP (50 μM), a known ADP antagonist.Both these actions of ADP could be inhibited by the simultaneous addition of ADP-β-S (50 μM). Aggregation induced by a stable endoperoxide analogue (11 ,9 -epoxymethano PGH2), which acts at a prostaglandin receptor rather than at an ADP receptor, was not inhibited by the simultaneous addition of ADP-β-S (50 μM). The behaviour of ADP-β-S towards human platelets is therefore tnat of a partial agonist at the ADP receptor.


1981 ◽  
Author(s):  
G J Johnson ◽  
G H R Rao ◽  
J G White

Epinephrine (E) potentiates arachidonate (A)-induced aggregation of human platelets. A-insensitive dog platelets (AIP), that form thromboxane A2 (T) but do not aggregate when stirred with A alone, aggregate when exposed to E + A. Therefore, we studied the effect of E on T-stimu- lated human platelet aggregation. AIP stirred with A formed T which was confirmed by TLC. 1/100 to 1/200 volume of AIP was removed 30 sec. after A, and transferred to gel- filtered, aspirin-incubated human platelets. Recipient platelet aggregation was proportional to the volume of AIP transferred. The addition of the thromboxane synthetase inhibitor, Azo Analog I, abolished the aggregating activity of AIP. Transfer of an aliquot of AIP that was inadequate to aggregate human gel-filtered, aspirin-incubated platelets resulted in irreversible aggregation in the presence of ≥0.5nM E. E potentiated aggregation when added 3 min. before but not 3 min. after aliquot transfer. T-stimulated aggregation was abolished by the T-antagonist, 13 azapro- stenoic acid (APA), but E added after APA and before T restored aggregation. E potentiation of T-stimulated aggregation was abolished by prior exposure to equimolar yohimbine, dihydroergocryptine and phentolamine, agents that bind to alpha2 adrenergic receptors, but not by prazosin an alpha1 antagonist. Higher concentrations of E reversed the inhibitory effects of the alpha2 adrenergic agents. All of these agents in higher concentrations (1-100μM) also blocked aggregation induced by T alone. Therefore T-induced platelet aggregation is potentiated by E, in concentrations attained in vivo, by a mechanism linked to platelet alpha adrenergic receptors. Platelet alpha2 receptors have a close functional relationship to the postulated T receptor. E may initiate platelet aggregation in vivo when T is formed in quantities inadequate to alone induce aggregation.


1997 ◽  
Vol 325 (2) ◽  
pp. 495-500 ◽  
Author(s):  
Catherine CALZADA ◽  
Evelyne VERICEL ◽  
Michel LAGARDE

There is mounting evidence that lipid peroxides contribute to pathophysiological processes and can modulate cellular functions. The aim of the present study was to investigate the effects of lipid hydroperoxides on platelet aggregation and arachidonic acid (AA) metabolism. Human platelets, isolated from plasma, were incubated with subthreshold (i.e. non-aggregating) concentrations of AA in the absence or presence of hydroperoxyeicosatetraenoic acids (HPETEs). Although HPETEs alone had no effect on platelet function, HPETEs induced the aggregation of platelets co-incubated with non-aggregating concentrations of AA, HPETEs being more potent than non-eicosanoid peroxides. The priming effect of HPETEs on platelet aggregation was associated with an increased formation of cyclo-oxygenase metabolites, in particular thromboxane A2, and was abolished by aspirin, suggesting an activation of cyclo-oxygenase by HPETEs. It was not receptor-mediated because the 12-HPETE-induced enhancement of AA metabolism was sustained in the presence of SQ29,548 or RGDS, which blocked the aggregation. These results indicate that physiologically relevant concentrations of HPETEs potentiate platelet aggregation, which appears to be mediated via a stimulation of cyclo-oxygenase activity.


2021 ◽  
Author(s):  
Daisuke Mizutani ◽  
Haruhiko Tokuda ◽  
Takashi Onuma ◽  
Kodai Uematsu ◽  
Daiki Nakashima ◽  
...  

Abstract Background: Amyloid β protein (Aβ) is the main product derived from amyloid precursor protein (APP) by sequential enzymatic actions. Deposition of Aβ in the brain parenchyma or cerebral vessels is a primary morphological feature of Alzheimer’s disease (AD). In addition, abnormal accumulation of Aβ in the cerebral vessels is known as cerebral amyloid angiopathy (CAA), which is considered a risk factor for intracerebral hemorrhage, particularly in the elderly. CAA reportedly contributes to the development of vascular cognitive decline in addition to AD. On the other hand, human platelets are recognized as the principal components affecting the onset and progression of AD. Although there are several studies showing that Aβ directly modulates human platelet functions, the exact mechanism underlying the Aβ effects on human platelets remains to be elucidated.Methods: The present study investigated the effects of Aβ on human platelet activation using a platelet aggregometer with laser scattering, followed by western blot analysis and ELISA.Results: Aβ at doses up to 7 µM alone failed to affect platelet aggregation or platelet-derived growth factor (PDGF)-AB secretion. On the other hand, Aβ decreased the platelet aggregation induced by thrombin receptor-activating protein (TRAP), but not collagen or ADP. Aβ also suppressed platelet aggregation induced by SCP0237, a selective protease-activated receptor (PAR)-1 agonist, and A3227, a selective PAR-4 agonist. The PDGF-AB secretion and the phosphorylated-heat shock protein (HSP)27 release by TRAP were inhibited by Aβ. In addition, the TRAP-induced phosphorylation of JNK and the phosphorylation of p38 MAP kinase followed by phosphorylation of HSP27 were reduced by Aβ.Conclusion: The results of the present study strongly suggest that Aβ negatively regulates PAR-elicited human platelet activation. These findings may indicate one of the causes of intracerebral hemorrhage due to CAA.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1112-1119
Author(s):  
LK Jennings ◽  
DR Phillips ◽  
WS Walker

Hybridomas secreting monoclonal antibodies (MoAbs) to human platelet membrane glycoprotein IIb (GPIIb) were prepared by fusing cells of a mouse myeloma line to spleen cells from a BALB/c mouse immunized with purified GPIIb. Six of the hybridomas secreted MoAbs that recognized epitopes on the 23,000-dalton, disulfide-linked subunit of GPIIb, GPIIb beta. All six of these MoAbs agglutinated platelets in the absence of calcium. The agglutination titers of three of the MoAbs, however, were enhanced between 2 and 6 log2 dilutions when titrated in the presence of mmol/L of calcium. The enhancement in titer was the result of MoAb- induced platelet activation followed by platelet aggregation, a reaction that could also be initiated by the monovalent Fab fragments prepared from one of the MoAbs. The MoAbs did not significantly agglutinate platelets from patients with Glanzmann's thrombasthenia, confirming biochemical evidence that there is a paucity of GPIIb beta in the membranes of these cells. Our results show that MoAbs to epitopes on GPIIb beta initiate distinct platelet responses; therefore, they should be useful for studying the ways in which regions of surface glycoproteins are involved in platelet-platelet interactions. In addition, these reagents may prove of value in diagnosing and typing patients with Glanzmann's thrombasthenia.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2107-2107
Author(s):  
Guangheng Zhu ◽  
Michelle Lee Webster ◽  
Adili Reheman ◽  
Pingguo Chen ◽  
Ebrahim Sayeh ◽  
...  

Abstract Background: Platelets are critical for maintaining hemostasis, but inappropriate platelet activation can lead to pathogenic thrombosis. It has been demonstrated that the platelet integrin αIIbβ3 is essential for platelet aggregation and is also a major target antigen in immune thrombocytopenias (e.g. ITP). Current monoclonal antibodies (mAbs) against this protein complex have been generated using traditional methods involving cross-species immunization (e.g. mouse proteins into rat hosts). These approaches may generate a limited repertoire of anti-β3 mAbs since the antigenicity of the protein and the variety of epitopes targeted are based on amino acid sequence differences between the two species and integrin family members are highly conserved. Additionally, studies in murine models of ITP are hampered by the use of xenogeneic antibodies rather than syngeneic antibodies. Methods: We developed a method to generate mouse anti-mouse β3 integrin mAbs utilising β3 gene deficient mice (β3−/−) immunized with wild-type platelets. To generate antibodies specific to the PSI domain (HPA-1 region) of β3 integrin, β3−/− mice were immunized with the recombinant murine PSI domain of β3 integrin. Platelet binding and specificity were determined by flow cytometry and western blot. In vitro effects on platelet function were measured using aggregometry. Different doses of mAbs (5, 10, and 15 μg/mouse) were injected intravenously to induce thrombocytopenia in vivo. Results: A total of twelve mAbs were generated against native β3 integrin (JAN A1, B1, C1, D1 and DEC A1 and B1, 9D2, M1) or recombinant PSI domain (PSI A1, B1, C1, E1). The mAbs were specific for β3 integrin; no binding was observed using β3−/− platelets. Isotyping showed that DEC A1 and DEC B1 are IgG3, PSI E1 is IgG2b, and all other mAbs are IgG1. The anti-PSI domain mAbs recognized linear epitopes and the anti-native β3 mAbs recognized conformational epitopes. All mAbs, with the exception of JAN A1 and B1, cross-reacted with human platelets. JAN C1, JAN D1, DEC A1, 9D2, M1, and all anti-PSI antibodies inhibited mouse platelet aggregation. These antibodies, except DEC A1, 9D2 and M1, also inhibited human platelet aggregation. One anti-PSI domain antibody (PSI B1), however, directly induced human platelet aggregation in the absence of agonist in platelet rich plasma but not in PIPES buffer. This suggests that PSI B1 may initiate conformational changes in β3 integrin and promote fibrinogen binding. Six anti-β3 mAbs (JAN A1, B1, C1 and D1, 9D2 and M1) induced severe dose-dependent thrombocytopenia in mice, while the anti-PSI domain mAbs induced only a mild decrease in platelet count. Interestingly, the two IgG3 mAbs (DEC A1 and B1) did not induce thrombocytopenia. Conclusion: This approach to generating mouse anti-mouse β3 integrin mAbs using β3−/− mice was successful. Different anti-β3 mAbs had different effects on platelet aggregation, and on the induction of thrombocytopenia. These mAbs may be useful reagents for research in thrombosis and immune thrombocytopenia and as novel anti-thrombotic therapeutics.


1973 ◽  
Vol 30 (01) ◽  
pp. 191-198 ◽  
Author(s):  
Haim Biran ◽  
Alexander Dvilansky ◽  
Ilana Nathan ◽  
Avinoam Livne

SummaryAggregation of washed human platelets, induced by either ADP, thrombin or collagen, was decreased by Echis colorata venom (EVC). With ADP as an inducer, the inhibition of aggregation was proportional to the venom concentration, starting from 0.27 μg/ml and attaining full inhibition with venom concentration of 9 μg/ml. Higher concentrations were required for comparable venom effects when collagen or thrombin were used as inducers. Based on serotonin release measurements and platelet counting, it is concluded that the ECV-diminished aggregation is not due to platelet lysis. Thrombin-dependent serotonin release was inhibited by the venom to an extent proportional to the log ECV concentration at a range of 0.27 to 90 μg/ml. ECV effeces on serotonin release are apparently independent on its effects on aggregation, since similar results were obtained either with or without EDTA.Endothelial damage and defibrination are already known to be associated with the bleeding tendency caused by ECV. The present data disclose a functional impairment of platelets as an additional antihemostatic effect of this venom.


Sign in / Sign up

Export Citation Format

Share Document