scholarly journals Flt-3 Ligand Synergizes With Granulocyte Colony-Stimulating Factor to Increase Neutrophil Numbers and to Mobilize Peripheral Blood Stem Cells With Long-Term Repopulating Potential

Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3998-4004 ◽  
Author(s):  
Graham Molineux ◽  
Clay McCrea ◽  
Xiao Qiang Yan ◽  
Patrick Kerzic ◽  
Ian McNiece

Abstract Flt-3 ligand (FL) shares many features with stem cell factor (SCF), a widely documented cofactor for peripheral blood progenitor cell (PBPC) mobilization. We investigated the mobilization of PBPCs by FL in combination with granulocyte colony-stimulating factor (G-CSF). As a single agent, FL was a relatively modest mobilizer of PBPCs, resulting in 360 granulocyte/macrophage colony-forming cells (GM-CFCs)/mL blood (control, 155 GM-CFCs/mL blood) and no advantage in leukocyte recovery when these PBPCs were transplanted to irradiated recipient mice. G-CSF, on the other hand, mobilized over 20,000 GM-CFCs/mL blood, and the combination of G-CSF + FL resulted in over 100,000 GM-CFCs/mL blood. The combination of G-CSF + FL stimulated increased levels of monocytes and basophils in the peripheral blood. The performance of the mobilized PBPC product in irradiated hosts correlated with progenitor numbers resulting in long-term engraftment in association with accelerated short-term recovery of both leukocytes and platelets. These data demonstrate the potential of FL to synergize with G-CSF to mobilize PBPCs with both short- and long-term engraftment potential. The effect is similar to the synergistic interaction of G-CSF and SCF on PBPC mobilization. The use of FL as opposed to SCF may elicit a different spectrum of toxicities including lymphoid proliferation effects, in contrast to the mast cell degranulation effects of SCF. Clinical studies of FL are needed to evaluate its usefulness in man.

Cartilage ◽  
2021 ◽  
pp. 194760352110495
Author(s):  
Konstantinos I. Papadopoulos ◽  
Mantana Paisan ◽  
Warachaya Sutheesophon ◽  
Thana Turajane

Osteoarthritis (OA) tends to occur in older individuals frequently burdened with comorbidities and diverse pharmacological interactions. As articular cartilage has low regenerative power, potent local tissue engineering approaches are needed to support chondrogenic differentiation. Acellular preparation methods as well as approaches to coax endogenous reparative cells into the joint space appear to have limited success. Supported by our in-vitro and clinical studies, we propose that our novel intra-articular administration of human granulocyte colony stimulating factor (IA-hG-CSF) combined with autologous activated peripheral blood stem cells (AAPBSC) is safe and offers treatment advantages not seen with other cellular interventions in early osteoarthritis.


Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1655-1658 ◽  
Author(s):  
WI Bensinger ◽  
CH Weaver ◽  
FR Appelbaum ◽  
S Rowley ◽  
T Demirer ◽  
...  

Peripheral blood stem cells (PBSCs) are widely used in autologous transplantation because of ease of collection and rapid hematopoietic reconstitution. However, PBSCs have rarely been used for allogeneic transplantation because of concerns about donor toxicities from cytokine administration and the theoretical increased risk of graft- versus-host-disease (GVHD) from the large number of T cells infused. Eight patients with advanced malignancies received allogeneic PBSC transplants from genotypically HLA-identical sibling donors. All donors received 5 days of recombinant human granulocyte colony-stimulating factor (rhG-CSF; 16 micrograms/kg/day) subcutaneously and were leukapheresed for 2 days. After treatment of the patient with total body irradiation and cyclophosphamide (n = 7) or etoposide, thiotepa, and cyclophosphamide (n = 1), PBSCs were infused immediately after collection and without modification. All patients received cyclosporine and either methotrexate (n = 6) or prednisone (n = 2) for GVHD prophylaxis, rhG-CSF was well tolerated with mild bone pain requiring acetaminophen occurring in two donors. All patients engrafted and in seven hematopoietic recovery was rapid, with 500 neutrophils/microL achieved by day 18 and 20,000 platelets/microL by day 12. Complete donor engraftment was documented by Y chromosome analysis in all four sex-mismatched donor-recipient pairs tested and by DNA analysis in two sex-matched pairs. One patient died on day 18 of veno-occlusive disease of the liver with engraftment but before chromosome analysis could be performed (results are pending in 1 patient). A second patient died of fungal infection 78 days after transplant. Grade 2 acute GVHD occurred in two patients and grade 3 GVHD occurred in one patient. One patient is 301 days from transplant in remission with chronic GVHD; the remaining five patients are alive and disease free 67 to 112 days after transplantation. Preliminary results indicate that allogeneic PBSCs mobilized by rhG-CSF can provide rapid hematologic recovery without an appreciably greater incidence of acute GVHD than would be expected with marrow. Further follow-up is required to determine the incidence of chronic GVHD and any potential beneficial effects on relapse after transplant.


Sign in / Sign up

Export Citation Format

Share Document