scholarly journals Host Reactive Donor T Cells Are Associated With Lung Injury After Experimental Allogeneic Bone Marrow Transplantation

Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2571-2580 ◽  
Author(s):  
Kenneth R. Cooke ◽  
Werner Krenger ◽  
Geoff Hill ◽  
Thomas R. Martin ◽  
Lester Kobzik ◽  
...  

Abstract Noninfectious lung injury is common after allogeneic bone marrow transplantation (BMT), but its association with acute graft-versus-host disease (GVHD) is unclear. Using a murine BMT system where donor and host differ by multiple minor histocompatibility (H) antigens, we investigated the nature of lung injury and its relationship both to systemic GVHD and host-reactive donor T cells. Lethally irradiated CBA hosts received syngeneic BMT or allogeneic (B10.BR) T-cell–depleted (TCD) bone marrow (BM) with and without the addition of T cells. Six weeks after BMT, significant pulmonary histopathology was observed in animals receiving allogeneic BMT compared with syngeneic controls. Lung damage was greater in mice that received allogeneic T cells and developed GVHD, but it was also detectable after TCD BMT when signs of clinical and histologic acute GVHD were absent. In each setting, lung injury was associated with significant alterations in pulmonary function. Mature, donor (Vβ6+and Vβ3+) T cells were significantly increased in the broncho-alveolar lavage (BAL) fluid of all allogeneic BMT recipients compared with syngeneic controls, and these cells proliferated and produced interferon-γ (IFN-γ) to host antigens in vitro. These in vitro responses correlated with increased IFN-γ and tumor necrosis factor-α (TNF-α) in the BAL fluid. We conclude that alloreactive donor lymphocytes are associated with lung injury in this allogeneic BMT model. The expansion of these cells in the BAL fluid and their ability to respond to host antigens even when systemic tolerance has been established (ie, the absence of clinical GVHD) suggest that the lung may serve as a sanctuary site for these host reactive donor T cells. These findings may have important implications with regard to the evaluation and treatment of pulmonary dysfunction after allogeneic BMT even when clinical GVHD is absent.

Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2571-2580 ◽  
Author(s):  
Kenneth R. Cooke ◽  
Werner Krenger ◽  
Geoff Hill ◽  
Thomas R. Martin ◽  
Lester Kobzik ◽  
...  

Noninfectious lung injury is common after allogeneic bone marrow transplantation (BMT), but its association with acute graft-versus-host disease (GVHD) is unclear. Using a murine BMT system where donor and host differ by multiple minor histocompatibility (H) antigens, we investigated the nature of lung injury and its relationship both to systemic GVHD and host-reactive donor T cells. Lethally irradiated CBA hosts received syngeneic BMT or allogeneic (B10.BR) T-cell–depleted (TCD) bone marrow (BM) with and without the addition of T cells. Six weeks after BMT, significant pulmonary histopathology was observed in animals receiving allogeneic BMT compared with syngeneic controls. Lung damage was greater in mice that received allogeneic T cells and developed GVHD, but it was also detectable after TCD BMT when signs of clinical and histologic acute GVHD were absent. In each setting, lung injury was associated with significant alterations in pulmonary function. Mature, donor (Vβ6+and Vβ3+) T cells were significantly increased in the broncho-alveolar lavage (BAL) fluid of all allogeneic BMT recipients compared with syngeneic controls, and these cells proliferated and produced interferon-γ (IFN-γ) to host antigens in vitro. These in vitro responses correlated with increased IFN-γ and tumor necrosis factor-α (TNF-α) in the BAL fluid. We conclude that alloreactive donor lymphocytes are associated with lung injury in this allogeneic BMT model. The expansion of these cells in the BAL fluid and their ability to respond to host antigens even when systemic tolerance has been established (ie, the absence of clinical GVHD) suggest that the lung may serve as a sanctuary site for these host reactive donor T cells. These findings may have important implications with regard to the evaluation and treatment of pulmonary dysfunction after allogeneic BMT even when clinical GVHD is absent.


2007 ◽  
Vol 293 (6) ◽  
pp. G1114-G1123 ◽  
Author(s):  
Yasuhiko Yoshida ◽  
Tadamichi Hirano ◽  
Gakuhei Son ◽  
Yuji Iimuro ◽  
Takehito Imado ◽  
...  

Allogeneic bone-marrow transplantation (BMT) can induce a powerful graft-vs.-tumor (GVT) effect not only on hematological malignancies but also on solid tumors. However, graft-vs.-host disease (GVHD) is a major complication of allogeneic BMT. We assessed GVT effect on hepatocellular carcinoma (HCC) and the effects of hepatocyte growth factor (HGF) gene transduction on GVHD in HCC transplanted mice. (C57BL/6 × C3H/HeJ)F1(B6C3F1, H-2bxk) mice were used as recipients and C3H/HeJ(H-2k) mice were used as donors. Hepa1-a (a C57L mouse-derived hepatoma cell, H-2b) was subcutaneously injected into the recipient mice. Tumor bearing mice were treated in the following ways: group 1, no treatment; group 2, total body irradiation (TBI); group 3, TBI and BMT; group 4, TBI and BMT with empty vector; group 5, TBI and BMT with HGF gene transduction; group 6, TBI and BMT with administration of FK506, a representative immunosuppressive agent. Acute GVHD was assessed by histological examination of the liver, small intestines, and large intestines. Tumor growth was markedly suppressed in mice that received an allogeneic BMT. Donor-derived CD8+T cells had infiltrated into the tumor, and cytotoxic CD8+T cells against HCC were present. However, among the four groups that received a BMT, this suppressive effect was weaker in group 6 compared with the other three groups ( groups 3, 4, and 5). HGF gene transduction improved GVHD while preserving the GVT effects. Allogeneic BMT markedly suppresses the growth of HCC. Simultaneous HGF gene transfer can suppress GVHD while preserving the GVT effect.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 4080-4088 ◽  
Author(s):  
Mathias M. Hauri-Hohl ◽  
Marcel P. Keller ◽  
Jason Gill ◽  
Katrin Hafen ◽  
Esther Pachlatko ◽  
...  

Abstract Acute graft-versus-host disease (aGVHD) impairs thymus-dependent T-cell regeneration in recipients of allogeneic bone marrow transplants through yet to be defined mechanisms. Here, we demonstrate in mice that MHC-mismatched donor T cells home into the thymus of unconditioned recipients. There, activated donor T cells secrete IFN-γ, which in turn stimulates the programmed cell death of thymic epithelial cells (TECs). Because TECs themselves are competent and sufficient to prime naive allospecific T cells and to elicit their effector function, the elimination of host-type professional antigen-presenting cells (APCs) does not prevent donor T-cell activation and TEC apoptosis, thus precluding normal thymopoiesis in transplant recipients. Hence, strategies that protect TECs may be necessary to improve immune reconstitution following allogeneic bone marrow transplantation.


Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2256-2265 ◽  
Author(s):  
Onder Alpdogan ◽  
Cornelius Schmaltz ◽  
Stephanie J. Muriglan ◽  
Barry J. Kappel ◽  
Miguel-Angel Perales ◽  
...  

Prolonged immunodeficiency after allogeneic bone marrow transplantation (BMT) causes significant morbidity and mortality from infection. This study examined in murine models the effects of interleukin-7 (IL-7) given to young and middle-aged (9-month-old) recipients of major histocompatibility complex (MHC)–matched or –mismatched allogeneic BMT. Although administration of IL-7 from day 0 to 14 after syngeneic BMT promoted lymphoid reconstitution, this regimen was ineffective after allogeneic BMT. However, IL-7 administration from day 14 (or 21) to 27 after allogeneic BMT accelerated restoration of the major lymphoid cell populations even in middle-aged recipients. This regimen significantly expanded donor-derived thymocytes and peripheral T cells, B-lineage cells in bone marrow and spleen, splenic natural killer (NK) cells, NK T cells, and monocytes and macrophages. Interestingly, although recipients treated with IL-7 had significant increases in CD4+ and CD8+ memory T-cell populations, increases in naive T cells were less profound. Most notable, however, were the observations that IL-7 treatment did not exacerbate graft-versus-host disease (GVHD) in recipients of an MHC-matched BMT, and would ameliorate GVHD in recipients of a MHC-mismatched BMT. Nonetheless, graft-versus-leukemia (GVL) activity (measured against 32Dp210 leukemia) remained intact. Although activated and memory CD4+ and CD8+ T cells normally express high levels of IL-7 receptor (IL-7R, CD127), activated and memory alloreactive donor-derived T cells from recipients of allogeneic BMT expressed little IL-7R. This might explain the failure of IL-7 administration to exacerbate GVHD. In conclusion, posttransplant IL-7 administration to recipients of an allogeneic BMT enhances lymphoid reconstitution without aggravating GVHD while preserving GVL.


Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 5002-5009 ◽  
Author(s):  
Christian M. Capitini ◽  
Sarah Herby ◽  
Matthew Milliron ◽  
Miriam R. Anver ◽  
Crystal L. Mackall ◽  
...  

Vaccine-based expansion of T cells is one approach to enhance the graft-versus-tumor effect of allogeneic bone marrow transplantation (BMT), but the complex immunobiology of the allogeneic environment on responses to tumor vaccines has not been well characterized. We hypothesized that subclinical graft-versus-host disease (GVHD) impairs immunity, but modulation of gamma interferon (IFN-γ) signaling could reverse this effect. Dendritic cell vaccines and donor lymphocyte infusions (DLIs) were incorporated into a minor histocompatibility antigen–mismatched, T cell–depleted, allogeneic BMT mouse model. Animals were then challenged with H-Y expressing tumors. CD4+ and CD8+ responses to H-Y were diminished in vaccinated allogeneic versus syngeneic BMT recipients with DLI doses below the threshold for clinical GVHD, especially in thymectomized hosts. IFN-γ receptor 1–deficient (IFN-γR1−/−) T cells cannot cause GVHD but also have diminished vaccine responses. Remarkably, IFN-γR1−/− bone marrow abrogates GVHD, allowing higher DLI doses to be tolerated, but improves vaccine responses and tumor protection. We conclude that tumor vaccines administered after allogeneic BMT can augment graft-versus-tumor if GVHD is avoided and that prevention of IFN-γ signaling on donor bone marrow is an effective approach to preventing GVHD while preserving immunocompetence.


Sign in / Sign up

Export Citation Format

Share Document