Correct Function of the Locus Control Region May Require Passage Through a Nonerythroid Cellular Environment

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 703-712 ◽  
Author(s):  
George Vassilopoulos ◽  
Patrick A. Navas ◽  
Evangelia Skarpidi ◽  
Kenneth R. Peterson ◽  
Chris H. Lowrey ◽  
...  

Abstract The function of the β-globin locus control region (LCR) has been studied both in cell lines and in transgenic mice. We have previously shown that when a 248-kb β-locus YAC was first microinjected into L-cells and then transferred into MEL cells by fusion, the YAC loci of the LxMEL hybrids displayed normal expression and developmental regulation.To test whether direct transfer of a β-globin locus (β-YAC) into MEL cells could be used for studies of the function of the LCR, a 155-kb β-YAC that encompasses the entire β-globin locus was used. This YAC was retrofitted with a PGK-neo selectable marker and with two I-PpoI sites at the vector arm-cloned insert junctions, allowing detection of the intact globin loci on a single I-PpoI fragment by pulsed field gel electrophoresis (PFGE). ThePpo-155 β-YAC was used to directly lipofect MEL 585 cells. In 7 β-YAC MEL clones with at least one intact copy of the YAC, the levels of total human globin mRNA (ie, ɛ + γ + β) per copy of integrated β-YAC varied more than 97-fold between clones. These results indicated that globin gene expression was strongly influenced by the position of integration of the β-YAC into the MEL cell genome and suggested that the LCR cannot function properly when the locus is directly transferred into an erythroid cell environment as naked β-YAC DNA. To test whether passage of the β-YAC through L-cells before transfer into MEL cells was the reason for the previously observed correct developmental regulation of human globin genes in the LxMEL hybrid cells, we transfected the YAC into L-cells by lipofection. Three clones carried the intact 144-kb I-PpoI fragment and transcribed the human globin genes with a fetal-like pattern. Subsequent transfer of the YAC of these L(β-YAC) clones into MEL cells by fusion resulted in LxMEL hybrids that synthesized human globin mRNA. The variation in human β-globin mRNA (ie, ɛ + γ + β) levels between hybrids was 2.5-fold, indicating that globin gene expression was independent of position of integration of the transgene, as expected for normal LCR function. The correct function of the LCR when the YAC is first transferred into the L-cell environment raises the possibility that normal activation of the LCR requires interaction with the transcriptional environment of an uncommitted, nonerythroid cell. We propose that the activation of the LCR may represent a multistep process initiated by the binding of ubiquitous transcription factors early during the differentiation of hematopoietic stem cells and completed with the binding of erythroid type of factors in the committed erythroid progenitors.

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 703-712 ◽  
Author(s):  
George Vassilopoulos ◽  
Patrick A. Navas ◽  
Evangelia Skarpidi ◽  
Kenneth R. Peterson ◽  
Chris H. Lowrey ◽  
...  

The function of the β-globin locus control region (LCR) has been studied both in cell lines and in transgenic mice. We have previously shown that when a 248-kb β-locus YAC was first microinjected into L-cells and then transferred into MEL cells by fusion, the YAC loci of the LxMEL hybrids displayed normal expression and developmental regulation.To test whether direct transfer of a β-globin locus (β-YAC) into MEL cells could be used for studies of the function of the LCR, a 155-kb β-YAC that encompasses the entire β-globin locus was used. This YAC was retrofitted with a PGK-neo selectable marker and with two I-PpoI sites at the vector arm-cloned insert junctions, allowing detection of the intact globin loci on a single I-PpoI fragment by pulsed field gel electrophoresis (PFGE). ThePpo-155 β-YAC was used to directly lipofect MEL 585 cells. In 7 β-YAC MEL clones with at least one intact copy of the YAC, the levels of total human globin mRNA (ie, ɛ + γ + β) per copy of integrated β-YAC varied more than 97-fold between clones. These results indicated that globin gene expression was strongly influenced by the position of integration of the β-YAC into the MEL cell genome and suggested that the LCR cannot function properly when the locus is directly transferred into an erythroid cell environment as naked β-YAC DNA. To test whether passage of the β-YAC through L-cells before transfer into MEL cells was the reason for the previously observed correct developmental regulation of human globin genes in the LxMEL hybrid cells, we transfected the YAC into L-cells by lipofection. Three clones carried the intact 144-kb I-PpoI fragment and transcribed the human globin genes with a fetal-like pattern. Subsequent transfer of the YAC of these L(β-YAC) clones into MEL cells by fusion resulted in LxMEL hybrids that synthesized human globin mRNA. The variation in human β-globin mRNA (ie, ɛ + γ + β) levels between hybrids was 2.5-fold, indicating that globin gene expression was independent of position of integration of the transgene, as expected for normal LCR function. The correct function of the LCR when the YAC is first transferred into the L-cell environment raises the possibility that normal activation of the LCR requires interaction with the transcriptional environment of an uncommitted, nonerythroid cell. We propose that the activation of the LCR may represent a multistep process initiated by the binding of ubiquitous transcription factors early during the differentiation of hematopoietic stem cells and completed with the binding of erythroid type of factors in the committed erythroid progenitors.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 334-339 ◽  
Author(s):  
E. Camilla Forsberg ◽  
Karen M. Downs ◽  
Emery H. Bresnick

The human β-globin locus control region (LCR) confers high-level, tissue-specific expression to the β-globin genes. Tandem Maf recognition elements (MAREs) within the hypersensitive site 2 (HS2) subregion of the LCR are important for the strong enhancer activity of the LCR. Multiple proteins are capable of interacting with these sites in vitro, including the erythroid cell- and megakaryocyte-specific transcription factor, NF-E2. The importance of NF-E2 for β-globin gene expression is evident in murine erythroleukemia cells lacking the p45 subunit of NF-E2. These CB3 cells have a severe defect in - and β-globin gene transcription, which can be restored by expression of NF-E2. However, mice nullizygous for p45 express nearly normal levels of β-globin. Thus, either a redundant factor(s) exists in mice that can functionally replace NF-E2, or NF-E2 does not function through the LCR to regulate β-globin gene expression. To address this issue, we asked whether NF-E2 binds directly to the tandem MAREs of HS2 in intact cells. Using a chromatin immunoprecipitation assay, we provide evidence for NF-E2 binding directly and specifically to HS2 in living erythroleukemia cells and in mouse fetal liver. The specific immunoisolation of HS2 sequences was dependent on the presence of p45 and on intact MAREs within HS2. These results support a direct role for NF-E2 in the regulation of β-globin gene expression through activation of the LCR.


2006 ◽  
Vol 26 (18) ◽  
pp. 6832-6843 ◽  
Author(s):  
Valerie J. Crusselle-Davis ◽  
Karen F. Vieira ◽  
Zhuo Zhou ◽  
Archana Anantharaman ◽  
Jörg Bungert

ABSTRACT The human β-globin genes are expressed in a developmental stage-specific manner in erythroid cells. Gene-proximal cis-regulatory DNA elements and interacting proteins restrict the expression of the genes to the embryonic, fetal, or adult stage of erythropoiesis. In addition, the relative order of the genes with respect to the locus control region contributes to the temporal regulation of the genes. We have previously shown that transcription factors TFII-I and USF interact with the β-globin promoter in erythroid cells. Herein we demonstrate that reducing the activity of USF decreased β-globin gene expression, while diminishing TFII-I activity increased β-globin gene expression in erythroid cell lines. Furthermore, a reduction of USF activity resulted in a significant decrease in acetylated H3, RNA polymerase II, and cofactor recruitment to the locus control region and to the adult β-globin gene. The data suggest that TFII-I and USF regulate chromatin structure accessibility and recruitment of transcription complexes in the β-globin gene locus and play important roles in restricting β-globin gene expression to the adult stage of erythropoiesis.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 334-339 ◽  
Author(s):  
E. Camilla Forsberg ◽  
Karen M. Downs ◽  
Emery H. Bresnick

Abstract The human β-globin locus control region (LCR) confers high-level, tissue-specific expression to the β-globin genes. Tandem Maf recognition elements (MAREs) within the hypersensitive site 2 (HS2) subregion of the LCR are important for the strong enhancer activity of the LCR. Multiple proteins are capable of interacting with these sites in vitro, including the erythroid cell- and megakaryocyte-specific transcription factor, NF-E2. The importance of NF-E2 for β-globin gene expression is evident in murine erythroleukemia cells lacking the p45 subunit of NF-E2. These CB3 cells have a severe defect in - and β-globin gene transcription, which can be restored by expression of NF-E2. However, mice nullizygous for p45 express nearly normal levels of β-globin. Thus, either a redundant factor(s) exists in mice that can functionally replace NF-E2, or NF-E2 does not function through the LCR to regulate β-globin gene expression. To address this issue, we asked whether NF-E2 binds directly to the tandem MAREs of HS2 in intact cells. Using a chromatin immunoprecipitation assay, we provide evidence for NF-E2 binding directly and specifically to HS2 in living erythroleukemia cells and in mouse fetal liver. The specific immunoisolation of HS2 sequences was dependent on the presence of p45 and on intact MAREs within HS2. These results support a direct role for NF-E2 in the regulation of β-globin gene expression through activation of the LCR.


1992 ◽  
Vol 12 (5) ◽  
pp. 2057-2066 ◽  
Author(s):  
B J Morley ◽  
C A Abbott ◽  
J A Sharpe ◽  
J Lida ◽  
P S Chan-Thomas ◽  
...  

The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.


1992 ◽  
Vol 12 (5) ◽  
pp. 2057-2066
Author(s):  
B J Morley ◽  
C A Abbott ◽  
J A Sharpe ◽  
J Lida ◽  
P S Chan-Thomas ◽  
...  

The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.


Genomics ◽  
2000 ◽  
Vol 63 (3) ◽  
pp. 417-424 ◽  
Author(s):  
Raouf Alami ◽  
M.A. Bender ◽  
Yong-Qing Feng ◽  
Steven N. Fiering ◽  
Bruce A. Hug ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 555-555 ◽  
Author(s):  
Hassana Fathallah ◽  
Ali Taher ◽  
Ali Bazarbachi ◽  
George F. Atweh

Abstract A number of therapeutic agents including hydroxyurea, butyrate and decitabine have shown considerable promise in the treatment of sickle cell disease (SCD). However, the same agents have shown less clinical activity in β-thalassemia. As a first step towards understanding the molecular basis of the different clinical responses to these agents, we have studied the mechanisms of induction of fetal hemoglobin (HbF) by butyrate in BFU-E derived cells from 5 patients with SCD and 9 patients with β-thalassemia intermedia. Exposure to butyrate resulted in a dose-dependent augmentation of γ-globin mRNA levels in erythroid cells from patients with SCD. In contrast, induction of γ-globin expression in erythroid cells from patients with β-thalassemia intermedia was only seen at a high concentration of butyrate. The increase in γ-globin mRNA levels in patients with SCD and β-thalassemia intermedia was associated with opening of the DNA structure as manifested by decreased DNA methylation at the γ-globin promoters. Interestingly, butyrate exposure had markedly different effects on the expression of the β- and α-globin genes in the two categories of patients. Butyrate decreased the level of β-globin mRNA in 4 out of 5 patients with SCD (P = 0.04), while in β-thalassemia the levels of β-globin mRNA did not change in 7 patients and decreased in 2 patients after butyrate exposure (P = 0.12). Thus in patients with SCD, the effects of the induction of the γ-globin gene on the γ/(β+γ) mRNA ratios were further enhanced by the butyrate-mediated decreased expression of the β-globin gene. As a result, γ/(β+γ) mRNA ratios increased in all patients with SCD, with a mean increase of 31% (P = 0.002). In contrast, butyrate increased γ/(β+γ) mRNA ratios only in 4 out of 9 patients with β-thalassemia, with a more modest mean increase of 12% (P = 0.004). Interestingly, the decreased β-globin expression in patients with SCD was associated with closing of the DNA configuration as manifested by hypermethylation of DNA at the promoter of the β-globin gene while methylation of the same promoter did not change following butyrate exposure in patients with β-thalassemia intermedia. More surprisingly, the expression of the α-globin genes increased following butyrate exposure in 4 out of 9 patients with β-thalassemia, while the levels of α-globin mRNA decreased in 4 out of 5 patients with SCD. As a result, the favorable effects of the butyrate-induced increase in γ-globin gene expression on the α: non-α mRNA imbalance in patients with β-thalassemia intermedia were partly neutralized by the corresponding increase in α-globin gene expression. These differences may explain, at least in part, the more favorable effects of inducers of HbF in SCD than in β-thalassemia. Further studies are necessary to fully understand the molecular bases of the different responses to agents that induce HbF in patients with these disorders.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 365-365 ◽  
Author(s):  
Valerie M. Jansen ◽  
Shaji Ramachandran ◽  
Aurelie Desgardin ◽  
Jin He ◽  
Vishwas Parekh ◽  
...  

Abstract Binding of EKLF to the proximal promoter CACC motif is essential for high-level tissue-specific β-globin gene expression. More recent studies have demonstrated that EKLF regulates expression of other erythroid-specific genes, suggesting a broad role for EKLF in co-ordinating gene transcription in differentiating erythroblasts. Given these observations, we hypothesized that EKLF may play a role in synchronizing α- and β-globin gene expression. Supporting this model, studies of fetal erythroblasts derived from EKLF-null embryos revealed a 3-fold reduction in murine α-globin gene expression in fetal erythroblasts when compared to wild type littermate controls. A similar reduction in primary α-globin RNA transcripts was observed in these studies. To further examine the molecular consequences of EKLF function at the α- and β-globin genes in vivo, we utilized an erythroid cell line derived from EKLF null fetal liver cells. We have demonstrated previously that introduction into these cells of the wildtype EKLF cDNA, fused in frame with a mutant estrogen response element results in tamoxifen-dependent rescue of β-globin gene expression. Consistent with our observations in primary erythroblasts, α-globin gene expression is present in the absence of functional EKLF. However, with tamoxifen induction, we observed a 3–5 fold increase in α-globin gene transcription. Interestingly, the kinetics of the changes in transcription of the α- and β-gene transcripts were similar. Enhancement in α-gene transcription was associated with EKLF binding at the α- and β-globin promoters as determined by a quantitative chromatin immunoprecipitation (ChIP) assay. Interestingly, maximal EKLF binding and α-gene transcription was observed within 2 hours of tamoxifen induction. We hypothesized that the role of EKLF may differ function at the promoters, given that a basal level of α-globin gene expression occurs in absence of EKLF binding. Supporting this hypothesis, we observed sequential recruitment of p45NF-E2, RNA polymerase II (Pol II) and the co-activator CBP to the β-promoter with tamoxifen induction. No change in GATA-1 binding was observed. In contrast, p45NF-E2 does not bind to the α-promoter and the kinetics of GATA-1 and PolII association is unchanged after tamoxifen induction. Taken together, our results demonstrate that EKLF regulates the co-ordinate high-level transcription of the α- and β-globin genes, binding in a kinetically identical manner to the gene promoters. However, the effects of EKLF on transacting factor recruitment (and chromatin modification) differ between the promoters, consistent with the idea that EKLF acts in a context-specific manner to modulate gene transcription.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4102-4102
Author(s):  
Vladan P. Cokic ◽  
Bojana B. Beleslin-Cokic ◽  
Constance Tom Noguchi ◽  
Alan N. Schechter

Abstract We have previously shown that nitric oxide (NO) is involved in the hydroxyurea-induced increase of gamma-globin gene expression in cultured human erythroid progenitor cells and that hydroxyurea increases NO production in endothelial cells via endothelial NO synthase (NOS). Here we report that co-culture of human bone marrow endothelial cells with erythroid progenitor cells induced gamma-globin mRNA expression (1.8 fold), and was further elevated (2.4 fold) in the presence of hydroxyurea (40 μM). Based on these results, NOS-dependent stimulation of NO levels by bradykinin and lipopolysaccharide has been observed in endothelial (up to 0.3 μM of NO) and macrophage cells (up to 6 μM of NO), respectively. Bradykinin slightly increased gamma-globin mRNA levels in erythroid progenitor cells, but failed to increase gamma-globin mRNA levels in endothelial/erythroid cell co-cultures indicating that stimulation of endothelial cell production of NO alone is not sufficient to induce gamma-globin expression. In contrast, lipopolysaccharide and interferon-gamma mutually increased gamma-globin gene expression (2 fold) in macrophage/erythroid cell co-cultures. In addition, hydroxyurea (5–100 μM) induced NOS-dependent production of NO in human (up to 0.7 μM) and mouse macrophages (up to 1.2 μM). Co-culture studies of macrophages with erythroid progenitor cells also resulted in induction of gamma-globin mRNA expression (up to 3 fold) in the presence of hydroxyurea (20–100 μM). These results demonstrate a mechanism by which hydroxyurea may induce globin genes and affect changes in the phenotype of hematopoietic cells via the common paracrine effect of bone marrow stromal cells.


Sign in / Sign up

Export Citation Format

Share Document