l cells
Recently Published Documents


TOTAL DOCUMENTS

1505
(FIVE YEARS 58)

H-INDEX

84
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jerry T. Dang ◽  
Valentin Mocanu ◽  
Heekuk Park ◽  
Michael Laffin ◽  
Caroline Tran ◽  
...  

AbstractRoux-en-Y gastric bypass (RYGB)-induced glycemic improvement is associated with increases in glucagon-like-peptide-1 (GLP-1) secreted from ileal L-cells. We analyzed changes in ileal bile acids and ileal microbial composition in diet-induced-obesity rats after RYGB or sham surgery to elucidate the early and late effects on L-cells and glucose homeostasis. In early cohorts, there were no significant changes in L-cell density, GLP-1 or glucose tolerance. In late cohorts, RYGB demonstrated less weight regain, improved glucose tolerance, increased L-cell density, and increased villi height. No difference in the expression of GLP-1 genes was observed. There were lower concentrations of ileal bile acids in the late RYGB cohort. Microbial analysis demonstrated decreased alpha diversity in early RYGB cohorts which normalized in the late group. The early RYGB cohorts had higher abundances of Escherichia–Shigella but lower abundances of Lactobacillus, Adlercreutzia, and Proteus while the late cohorts demonstrated higher abundances of Escherichia–Shigella and lower abundances of Lactobacillus. Shifts in Lactobacillus and Escherichia–Shigella correlated with decreases in multiple conjugated bile acids. In conclusion, RYGB caused a late and substantial increase in L-cell quantity with associated changes in bile acids which correlated to shifts in Escherichia–Shigella and Lactobacillus. This proliferation of L-cells contributed to improved glucose homeostasis.


Author(s):  
Raja Gopal Reddy Mooli ◽  
Dhanunjay Mukhi ◽  
Anil K. Pasupulati ◽  
Simon S. Evers ◽  
Ian J. Sipula ◽  
...  
Keyword(s):  
L Cells ◽  

2021 ◽  
Vol 911 ◽  
pp. 174482
Author(s):  
Jiao Wang ◽  
Li-Rui Wei ◽  
Yan-Ling Liu ◽  
Cheng-Zhi Ding ◽  
Feng Guo ◽  
...  
Keyword(s):  

Author(s):  
Hiroyuki Nakamori ◽  
Koji Iida ◽  
Hikaru Hashitani

Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatio-temporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally-applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 μM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally-applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.


2021 ◽  
Author(s):  
Naama Reicher ◽  
Tal Melkman-Zehavi ◽  
Jonathan Dayan ◽  
Zehava Uni

Abstract Initial nutritional stimulation is a key driving force for small intestinal maturation, and is mediated by enteroendocrine L-cells signaling. In chick embryos, administration of specific nutrients into the amniotic fluid stimulates early development of the small intestine. In this study, we examined the effects of intra-amniotic administration of l-glutamine (Gln) on enterocyte morphological and functional maturation and L-cell signaling before and after hatch. Gln stimulation at embryonic day 17 caused an increase in enterocyte and microvilli dimensions by 10 and 20%, respectively, within 48h. Post-hatch, enterocytes and microvilli were 20% longer in Gln-treated chicks. Correspondingly, mRNA expression of brush border nutrient transporters PepT-1 and SGLT-1 and tight junction proteins TJP-1, TJP-2 and Occludin was significantly upregulated before and after hatch (P<0.05) in Gln-treated chicks. We then evaluated the effects of Gln stimulation on enteroendocrine signaling by locating L-cells in the developing jejunum and observed significant increases in mRNA expression of L-cell signaling components GLP-2R, IGF-1 and IGF-1R before and after hatch, in response to Gln stimulation (P<0.05). Our findings link primary nutrient stimulation of L-cells to enterocyte morphological and functional maturation and provide a model for investigating the effects of specific nutrients on enteroendocrine signaling in the developing small intestine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rune E. Kuhre ◽  
Ida M. Modvig ◽  
Sara L. Jepsen ◽  
Hüsün S. Kizilkaya ◽  
Cecilie Bæch-Laursen ◽  
...  

The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5–6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014—an often used MC4R antagonist, which we found to be a partial agonist—did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rune E. Kuhre ◽  
Carolyn F. Deacon ◽  
Jens J. Holst ◽  
Natalia Petersen

Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body’s metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.


2021 ◽  
Vol 22 (8) ◽  
pp. 3951
Author(s):  
Caini Fan ◽  
Laureano D. Asico ◽  
Van Anthony M. Villar ◽  
Jessica Hunt ◽  
Santiago Cuevas ◽  
...  

Gastrin, secreted by G-cells, and glucagon-like peptide-1 (GLP-1), secreted by L-cells, may participate in the regulation of sodium balance. We studied the effect of sodium in mice in vivo and mouse ileum and human L-cells, on GLP-1 secretion, and the role of NFAT5 and gastrin-releasing peptide receptor (GRPR) in this process. A high-sodium diet increases serum GLP-1 levels in mice. Increasing sodium concentration stimulates GLP-1 secretion from mouse ileum and L-cells. GRP enhances the high sodium-induced increase in GLP-1 secretion. High sodium increases cellular GLP-1 expression, while low and high sodium concentrations increase NFAT5 and GRPR expression. Silencing NFAT5 in L-cells abrogates the stimulatory effect of GRP on the high sodium-induced GLP-1 secretion and protein expression, and the sodium-induced increase in GRPR expression. GLP-1 and gastrin decrease the expression of Na+-K+/ATPase and increase the phosphorylation of sodium/hydrogen exchanger type 3 (NHE3) in human renal proximal tubule cells (hRPTCs). This study gives a new perspective on the mechanisms of GLP-1 secretion, especially that engendered by ingested sodium, and the ability of GLP-1, with gastrin, to decrease Na+-K+/ATPase expression and NHE3 function in hRPTCs. These results may contribute to the better utilization of current and future GLP-1-based drugs in the treatment of hypertension.


Sign in / Sign up

Export Citation Format

Share Document