scholarly journals Mapping quantitative trait loci in outcross populations via residual maximum likelihood. II. A simulation study

1996 ◽  
Vol 28 (6) ◽  
pp. 491 ◽  
Author(s):  
FE Grignola ◽  
I Hoeschele ◽  
Q Zhang ◽  
G Thaller
Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 855-865 ◽  
Author(s):  
Chen-Hung Kao

AbstractThe differences between maximum-likelihood (ML) and regression (REG) interval mapping in the analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The analytical investigation is based on the comparison of the solution sets of the ML and REG methods in the estimation of QTL parameters. Their differences are found to relate to the similarity between the conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error (MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL detection between the two methods become larger as (1) the proportion of variance explained by QTL becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is biased in the estimation of the proportion of variance explained by QTL, and it may have a serious problem in detecting closely linked QTL when compared to the ML method. In general, the differences between the two methods may be minor, but can be significant when QTL interact or are closely linked. The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG interval mapping. The REG method is faster in computation, especially when the number of QTL considered in the model is large. Recognizing the factors affecting the differences between REG and ML interval mapping can help an efficient strategy, using both methods in QTL mapping to be outlined.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 931-938
Author(s):  
Dirk-Jan de Koning ◽  
Henk Bovenhuis ◽  
Johan A M van Arendonk

Abstract In this article, the quantitative genetic aspects of imprinted genes and statistical properties of methods to detect imprinted QTL are studied. Different models to detect imprinted QTL and to distinguish between imprinted and Mendelian QTL were compared in a simulation study. Mendelian and imprinted QTL were simulated in an F2 design and analyzed under Mendelian and imprinting models. Mode of expression was evaluated against the H0 of a Mendelian QTL as well as the H0 of an imprinted QTL. It was shown that imprinted QTL might remain undetected when analyzing the genome with Mendelian models only. Compared to testing against a Mendelian QTL, using the H0 of an imprinted QTL gave a higher proportion of correctly identified imprinted QTL, but also gave a higher proportion of false inference of imprinting for Mendelian QTL. When QTL were segregating in the founder lines, spurious detection of imprinting became more prominent under both tests, especially for designs with a small number of F1 sires.


Sign in / Sign up

Export Citation Format

Share Document