experimental crosses
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 1)

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1015
Author(s):  
Luiza Maria Grzyb Delgado ◽  
Jader de Oliveira ◽  
Amanda Ravazi ◽  
Fernanda Fernandez Madeira ◽  
Yago Visinho dos Reis ◽  
...  

Triatoma petrocchiae is a species morphologically similar to T. b. brasiliensis (which resulted in a synonymization event); despite this similarity, genetic, morphological, and experimental crossbreeding studies confirmed the specific status of T. petrocchiae. Considering that both species have been reported living in sympatry and that, for a long time, most species of the T. brasiliensis complex were considered only chromatic variants of T. b. brasiliensis, we carried out experimental crosses between T. b. brasiliensis and T. petrocchiae (to confirm whether these species are reproductively isolated) and between T. lenti and T. petrocchiae (to assess whether T. petrocchiae also presents prezygotic isolation with the other species of the T. brasiliensis complex). Reciprocal experimental crosses were conducted, and weekly, the eggs were collected, counted, and separated in new containers to assess the hatch rate. Neither cross resulted in hybrids, demonstrating that there are pre-zygotic reproductive barriers installed between T. petrocchiae and the other species of the T. brasiliensis complex. On the basis of the results above, we demonstrated that T. petrocchiae is reproductively isolated from T. b. brasiliensis and T. lenti. Furthermore, we suggest that T. petrocchiae is the species most derived from the T. brasiliensis complex.


2021 ◽  
Author(s):  
Tilman Rönneburg ◽  
Yanjun Zan ◽  
Christa F Honaker ◽  
Paul B Siegel ◽  
Örjan Carlborg

Genetic dissection of highly polygenic traits is a challenge, in part due to the power necessary to confidently identify loci with minor effects. Experimental crosses are valuable resources for mapping such traits. Traditionally, genome-wide analyses of experimental crosses have targeted major loci using data from a single generation, often the F2, with additional, later generation individuals being generated for replication and fine-mapping. Here, we aim to confidently identify minor-effect loci contributing to the highly polygenic basis of the long-term, divergent bi-directional selection responses for 56-day body weight in the Virginia chicken lines. To achieve this, a powerful strategy was developed to make use of data from all generations (F2-F18) of an advanced intercross line, developed by crossing the low and high selected lines after 40 generations of selection. A cost-efficient low-coverage sequencing based approach was used to obtain high-confidence genotypes in 1Mb bins across 99.3% of the chicken genome for >3,300 intercross individuals. In total, 12 genome-wide significant and 10 additional suggestive QTL for 56-day body weight were mapped, with only two of these QTL reaching genome-wide, and one suggestive, significance in analyses of the F2 generation. Five of the significant, and four of the suggestive, QTL were among the 20 loci reaching a 20% FDR-threshold in previous analyses of data from generation F15. The novel, minor-effect QTL mapped here were generally mapped due to an overall increase in power by integrating data across generations, with minor contributions from increased genome-coverage and improved marker information content. Significant and suggestive QTL now explain >60% of the difference between the parental lines, three times more than the previously reported significant QTL. Making integrated use of all available samples from multiple generations in experimental crosses is now economically feasible using the low-cost, sequencing-based genotyping strategies outlined here. Our empirical results illustrate the value of this strategy for mapping novel minor-effect loci contributing to complex traits to provide a more confident, comprehensive view of the individual loci that form the genetic basis of the highly polygenic, long-term selection responses for 56-day body weight in the Virginia chicken lines.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amanda Ravazi ◽  
Jader de Oliveira ◽  
Fabricio Ferreria Campos ◽  
Fernanda Fernandez Madeira ◽  
Yago Visinho dos Reis ◽  
...  

Abstract Background The tribe Rhodniini is a monophyletic group composed of 24 species grouped into two genera: Rhodnius and Psammolestes. The genus Psammolestes includes only three species, namely P. coreodes, P. tertius and P. arthuri. Natural hybridization events have been reported for the Rhodniini tribe (for genus Rhodnius specifically). Information obtained from hybridization studies can improve our understanding of the taxonomy and systematics of species. Here we report the results from experimental crosses performed between P. tertius and P. coreodes and from subsequent analyses of the reproductive and morphological aspects of the hybrids. Methods Crossing experiments were conducted between P. tertius and P. coreodes to evaluate the pre- and post-zygotic barriers between species of the Rhodniini tribe. We also performed cytogenetic analyses of the F1 hybrids, with a focus on the degree of pairing between the homeologous chromosomes, and morphology studies of the male gonads to evaluate the presence of gonadal dysgenesis. Lastly, we analyzed the segregation of phenotypic characteristics. Results Interspecific experimental crosses demonstrated intrageneric genomic compatibility since hybrids were produced in both directions. However, these hybrids showed a high mortality rate, suggesting a post-zygotic barrier resulting in hybrid unviability. The F1 hybrids that reached adulthood presented the dominant phenotypic segregation pattern for P. tertius in both directions. These insects were then intercrossed; the hybrids were used in the cross between P. tertius ♀ × P. coreodes ♂ died before oviposition, and the F1 hybrids of P. coreodes ♀ x P. tertius ♂ oviposited and their F2 hybrids hatched (however, all specimens died after hatching, still in first-generation nymph stage, pointing to a hybrid collapse event). Morphological analyses of male gonads from F1 hybrids showed that they did not have gonadal dysgenesis. Cytogenetic analyses of these triatomines showed that there were metaphases with 100% pairing between homeologous chromosomes and metaphases with pairing errors. Conclusion The results of this study demonstrate that Psammolestes spp. have intrageneric genomic compatibility and that post-zygotic barriers, namely unviability of hybrid and hybrid collapse, resulted in the breakdown of the hybrids of P. tertius and P. coreodes, confirming the specific status of species based on the biological concept of species. Graphical abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Natália Regina Cesaretto ◽  
Jader de Oliveira ◽  
Amanda Ravazi ◽  
Fernanda Fernandez Madeira ◽  
Yago Visinho dos Reis ◽  
...  

Abstract Background Meccus' taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma. In 1859 the species was transferred to the genus Meccus and in 1930 to Triatoma. However, in the twentieth century, the Meccus genus was revalidated (alteration corroborated by molecular studies) and, in the twenty-first century, through a comprehensive study including more sophisticated phylogenetic reconstruction methods, Meccus was again synonymous with Triatoma. Events of natural hybridization with production of fertile offspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma subcomplex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. Based on the above, we carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compatibility between species of the T. phyllosoma complex. In addition, we have grouped our results with information from the literature regarding crosses between species that were grouped in the genus Meccus with Triatoma, in order to discuss the importance of experimental crosses to confirm the generic reorganization of species. Results The crosses between T. mopan female and T. longipennis male resulted in viable offspring. The hatching of hybrids, even if only in one direction and/or at low frequency, demonstrates reproductive compatibility and homeology between the genomes of the parents. Conclusion Considering that intergeneric crosses usually do not result in viable offspring in Triatominae, the reproductive compatibility observed between the T. phyllosoma subcomplex species considered in the Meccus genus with species of the Triatoma genus shows that there is “intergeneric” genomic compatibility, which corroborates the generic reorganization of Meccus in Triatoma. Graphic Abstract


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1117
Author(s):  
Clémentine Baccati ◽  
Marc Gibernau ◽  
Mathieu Paoli ◽  
Patrick Ollitrault ◽  
Félix Tomi ◽  
...  

The Papeda Citrus subgenus includes several species belonging to two genetically distinct groups, containing mostly little-exploited wild forms of citrus. However, little is known about the potentially large and novel aromatic diversity contained in these wild citruses. In this study, we characterized and compared the essential oils obtained from peels and leaves from representatives of both Papeda groups, and three related hybrids. Using a combination of GC, GC-MS, and 13C-NMR spectrometry, we identified a total of 60 compounds in peel oils (PO), and 76 compounds in leaf oils (LO). Limonene was the major component in almost all citrus PO, except for C. micrantha and C. hystrix, where β-pinene dominated (around 35%). LO composition was more variable, with different major compounds among almost all samples, except for two citrus pairs: C. micrantha/C. hystrix and two accessions of C. ichangensis. In hybrid relatives, the profiles were largely consistent with their Citrus/Papeda parental lineage. This high chemical diversity, not only among the sections of the subgenus Papeda, but also between species and even at the intraspecific level, suggests that Papeda may be an important source of aroma diversity for future experimental crosses with field crop species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fabiola Parra-Rondinel ◽  
Alejandro Casas ◽  
Domingo Begazo ◽  
Amalia Paco ◽  
Eusebia Márquez ◽  
...  

The Andean region is one of the areas with the earliest signs of food production systems and highest agrobiodiversity of the world, which resulted from millennia of domestication in a context of high ecosystem heterogeneity and human cultures valuing diversity for risk management. FAO has reported nearly 4000 varieties of cultivated potatoes still grown in the Andes, 3000 of them currently occurring in Peru. Such diversity has enormous sources of variation in wild (atoq papa) and weedy (araq papa and k’ipa papa) potatoes that coexist with crops, but their variation, interactions and mechanisms influencing diversification processes still require studies. In order to have a panorama of the variation and mechanisms influencing it in a regional setting, we studied biocultural factors favoring potatoes diversity in communities of Cusco and Apurimac, Peru. Our study documented the regional variation of wild, weedy, and cultivated potatoes recognized by local Quechua people and conducted semi-structured interviews to document their use, cultural value, and strategies of gene flow management implemented. We also studied their phenology, floral biology, flower visitors, and conducted experimental crosses between the wild S. candolleanum and 30 varieties of cultivated potatoes. We identified the wild potatoes S. acaule, S. brevicaule and S. candolleanum and 53 varieties of araq papa used and managed by local people. The latter provide nearly one third of the annual consumption of tubers by people interviewed and are, therefore, highly valued, maintained and managed in crop fields (chacras). People recognized that crosses between wild, weedy, and cultivated potatoes occur, and identified flower visitors and frugivores consuming their berries. Overlap of blooming periods and flower visitors of wild, weedy, and cultivated potatoes was recorded. Almost all flower visitors are shared among the different potato species and varieties, the bumble bees being particularly relevant in pollination of all taxa studied. We recorded seed production in nearly 35% of the experimental crosses. K’ipa papas are sets of mixtures of plants resulting from remaining tubers of cultivated potatoes, but also those from seeds that may result from hybridization of wild, weedy, and cultivated potatoes. Since local people commonly use k’ipa papa varieties and some of them are kept for planting in chacras, sexual reproduction in k’ipa papas is possibly one main mechanism of variation and source of new varieties of crops. Maintaining wild and weedy potatoes, and the natural and cultural mechanisms of gene flow is crucial for in situ conservation and generation of potato variation.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 830
Author(s):  
Kaio Alevi ◽  
Jader de Oliveira ◽  
Ariane Garcia ◽  
Daniel Cristal ◽  
Luiza Delgado ◽  
...  

Chagas disease is the most prevalent neglected tropical disease in the Americas and makes an important contribution to morbidity and mortality rates in countries where it is endemic since 30 to 40% of patients develop cardiac diseases, gastrointestinal disorders, or both. In this paper, a new species of the genus Triatoma is described based on specimens collected in the Department San Miguel, Province of Corrientes, Argentina. Triatoma rosai sp. nov. is closely related to T. sordida (Stål, 1859), and was characterized based on integrative taxonomy using morphological, morphometric, molecular data, and experimental crosses. These analyses, combined with data from the literature (cytogenetics, electrophoresis pattern, molecular analyses, cuticular hydrocarbons pattern, geometric morphometry, cycle, and average time of life as well as geographic distribution) confirm the specific status of T. rosai sp. nov. Natural Trypanosoma cruzi infection, coupled with its presence mostly in peridomestic habitats, indicates that this species can be considered as an important Chagas disease vector from Argentina.


2020 ◽  
Vol 111 (6) ◽  
pp. 531-538 ◽  
Author(s):  
Jennifer R Mandel ◽  
Adam J Ramsey ◽  
Jacob M Holley ◽  
Victoria A Scott ◽  
Dviti Mody ◽  
...  

Abstract Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.


2020 ◽  
Vol 111 (3) ◽  
pp. 249-262 ◽  
Author(s):  
Bridgett M vonHoldt ◽  
Matthew L Aardema

Abstract This bibliography provides a collection of references that documents the evolution of studies evidencing interbreeding among Canis species in North America. Over the past several decades, advances in biology and genomic technology greatly improved our ability to detect and characterize species interbreeding, which has significance for understanding species in a changing landscape as well as for endangered species management. This bibliography includes a discussion within each category of interbreeding, the timeline of developing evidence, and includes a review of past research conducted on experimental crosses. Research conducted in the early 20th century is rich with detailed records and photographs of hybrid offspring development and behavior. With the progression of molecular methods, studies can estimate historical demographic parameters and detect chromosomal patterns of ancestry. As these methods continue to increase in accessibility, the field will gain a deeper and richer understanding of the evolutionary history of North American Canis.


2018 ◽  
Author(s):  
Gregory R. Keele ◽  
Paul L. Maurizio ◽  
Daniel Oreper ◽  
William Valdar

ABSTRACTIn designing experimental crosses of inbred strains of model organisms, researchers must make a number of decisions. These include the selection of the appropriate strains, the cross design (eg. F2 intercross), and the number of progeny to collect (sample size). These decisions strongly influence the potential for a successful quantitative trait locus (QTL) mapping experiment; good design decisions will lead to efficient and effective science. Thus experimental design deserves careful consideration and planning. Experimental outcomes can be quantified through utility functions using a Bayesian decision theoretic approaches. For QTL mapping experiments, the power to map a QTL is an appealing utility function to maximize. Using any utility function to aid in experimental design will be dependent on assumptions, such as the QTL effect size in the case of power. Rather than arbitrarily selecting QTL effect size values, they can be estimated from pilot data using a Bayesian hierarchical model. The information in the pilot data can be propagated to the utility function, using Markov Chain Monte Carlo (MCMC) to sample from the posterior distribution. Key features of this approach include: 1) distributional summaries of utility, which are preferable to point estimates, and 2) a comprehensive search of the experimental space of crosses of inbred lines for well-designed experiments. We evaluate this Bayesian theoretic approach using diallel crosses as the pilot data. We present results from simulations as well as present examples from both Mendelian and complex traits in the founder strains of the mouse Collaborative Cross. All analyses were performed using our R package, DIDACT (Diallel-Informed Decision theoretic Approach for Crosses Tool), developed to perform Bayesian cross selection based on diallel pilot data.


Sign in / Sign up

Export Citation Format

Share Document