scholarly journals Fitness variation in response to artificial selection for reduced cell area, cell number and wing area in natural populations of Drosophila melanogaster

2007 ◽  
Vol 7 (Suppl 2) ◽  
pp. S10 ◽  
Author(s):  
Vincenzo Trotta ◽  
Federico CF Calboli ◽  
Marcello Ziosi ◽  
Sandro Cavicchi
1997 ◽  
Vol 69 (1) ◽  
pp. 61-68 ◽  
Author(s):  
JENNIE McCABE ◽  
VERNON FRENCH ◽  
LINDA PARTRIDGE

We used Drosophila melanogaster to test for compensatory control of cell area and cell number in the regulation of total wing area. In two random bred wild-type base stocks collected from different geographic locations we found a negative association between the area and the number of cells in the wing blade. Three replicate lines were selected for increased or decreased wing area, with cell area maintained at the same level as in the three controls. After eight generations of selection, despite a large and highly significant difference in wing area between the large, control and small selection lines, cell area did not differ significantly between them. Rather, the difference in wing area between selection regimes was attributable to differences in cell number. Over the course of selection, the initially significant negative correlation between cell area and cell number in the wing increased, providing evidence for compensatory regulation of cell area and cell number. As a result of the increasingly negative association between the two traits, the variance in wing area declined as selection proceeded. It will be important to discover the mechanisms underlying the compensatory regulation of cell area and cell number.


2019 ◽  
Vol 10 ◽  
Author(s):  
Sylvia Gerritsma ◽  
Kirsten M. Jalvingh ◽  
Carmen van de Beld ◽  
Jelmer Beerda ◽  
Louis van de Zande ◽  
...  

1999 ◽  
Vol 74 (1) ◽  
pp. 43-54 ◽  
Author(s):  
LINDA PARTRIDGE ◽  
ROSALIE LANGELAN ◽  
KEVIN FOWLER ◽  
BAS ZWAAN ◽  
VERNON FRENCH

Correlated responses to artificial selection on body size in Drosophila melanogaster were investigated, to determine how the changes in size were produced during development. Selection for increased thorax length was associated with an increase in larval development time, an extended growth period, no change in growth rate, and an increased critical larval weight for pupariation. Selection for reduced thorax length was associated with reduced growth rate, no change in duration of larval development and a reduced critical larval weight for pupariation. In both lines selected for thorax length and lines selected for wing area, total body size changed in the same direction as the artificially selected trait. In large selection lines of both types, the increase in size was achieved almost entirely by an increase in cell number, while in the small lines the decrease in size was achieved predominantly by reduced cell size, and also by a reduction in cell number. The implications of the results for evolutionary-genetic change in body size in nature are discussed.


2016 ◽  
Vol 12 (10) ◽  
pp. 20160625 ◽  
Author(s):  
Subhash Rajpurohit ◽  
Rani Richardson ◽  
John Dean ◽  
Raul Vazquez ◽  
Grace Wong ◽  
...  

Pigmentation is a classic phenotype that varies widely and adaptively in nature both within and among taxa. Genes underlying pigmentation phenotype are highly pleiotropic, creating the potential for functional trade-offs. However, the basic tenets of this trade-off hypothesis with respect to life-history traits have not been directly addressed. In natural populations of Drosophila melanogaster , the degree of melanin pigmentation covaries with fecundity and several other fitness traits. To examine correlations and potential trade-offs associated with variation in pigmentation, we selected replicate outbred populations for extreme pigmentation phenotypes. Replicate populations responded rapidly to the selection regime and after 100 generations of artificial selection were phenotyped for pigmentation as well as the two basic fitness parameters of fecundity and longevity. Our data demonstrate that selection on pigmentation resulted in a significant shift in both fecundity and longevity profiles. Selection for dark pigmentation resulted in greater fecundity and no pronounced change in longevity, whereas selection for light pigmentation decreased longevity but did not affect fecundity. Our results indicate the pleiotropic nature of alleles underlying pigmentation phenotype and elucidate possible trade-offs between pigmentation and fitness traits that may shape patterns of phenotypic variation in natural populations.


Sign in / Sign up

Export Citation Format

Share Document