scholarly journals Dietary red palm oil supplementation reduces myocardial infarct size in an isolated perfused rat heart model

2010 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Dirk J Bester ◽  
Krisztina Kupai ◽  
Tamas Csont ◽  
Gergu Szucs ◽  
Csaba Csonka ◽  
...  
2018 ◽  
Vol 8 (3) ◽  
pp. 173-182 ◽  
Author(s):  
Fu-wei Zhang ◽  
Jian Tong ◽  
Yu-sheng Yan ◽  
Qun-qing Chen ◽  
Xiao-ping Zhao

Aims: This study aimed to evaluate the cardioprotective effects of ω-3 polyunsaturated fatty acids (PUFAs) postconditioning against ischemia-reperfusion (I/R) injury. Methods: Sixty Sprague-Dawley rats were randomly divided into 4 groups (n = 15 for each) and used to generate the Langendorff isolated perfused rat heart model. The sham group received a continuous perfusion of 150 min. The remaining three I/R-treated groups sequentially received a 30-min perfusion, a 30-min cardioplegia, and a 90-min reperfusion. The I/R-ischemic preconditioning (IP) group additionally received three cycles of 20-s reperfusion and 20-s coronary reocclusion preceded the 90 min of reperfusion. The I/R-ω group were perfused with ω-3 PUFAs for 15 min before the 90 min of reperfusion. The myocardial infarct size, the degree of mitochondrial damage, the antioxidant capacity of the myocardium, and the cardiac functions during reperfusion were compared among groups. Results: Compared with the I/R group, the I/R-ω group had significantly reduced myocardial infarct size, reduced levels of lactate dehydrogenase and malondialdehyde, elevated superoxide dismutase level, and elevated rising (+dp/dtmax) and descending (–dp/dtmax) rate of left ventricular pressure. The I/R-ω group had a significantly lower rate of mitochondrial damage in myocardial tissue compared with the I/R and I/R-IP groups. Conclusion: ω-3 PUFA postconditioning possesses good cardioprotective effects and may be developed into a therapeutic strategy for myocardial I/R injury.


2006 ◽  
Vol 17 (4) ◽  
pp. 265-271 ◽  
Author(s):  
Anna-Mart Engelbrecht ◽  
Johan Esterhuyse ◽  
Eugene F. du Toit ◽  
Amanda Lochner ◽  
Jacques van Rooyen

2008 ◽  
Vol 294 (2) ◽  
pp. H970-H978 ◽  
Author(s):  
Samarjit Das ◽  
Istvan Lekli ◽  
Manika Das ◽  
Gergo Szabo ◽  
Judit Varadi ◽  
...  

A recent study from our laboratory indicated the cardioprotective ability of the tocotrienol-rich fraction (TRF) from red palm oil. The present study compared cardioprotective abilities of different isomers of tocotrienol against TRF as recently tocotrienol has been found to function as a potent neuroprotective agent against stroke. Rats were randomly assigned to one of the following groups: animals were given, by gavage, either 0.35%, 1%, or 3.5% TRF for two different periods of time (2 or 4 wk) or 0.03, 0.3, and 3 mg/kg body wt of one of the isomers of tocotrienol (α, γ, or δ) for 4 wk; control animals were given, by gavage, vehicle only. After 2 or 4 wk, rats were killed, and their hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. Dose-response and time-response experiments revealed that the optimal concentration for TRF was 3.5% TRF and 0.3 mg/kg body wt of tocotrienol given for 4 wk. TRF as well as all the isomers of tocotrienol used in our study provided cardioprotection, as evidenced by their ability to improve postischemic ventricular function and reduce myocardial infarct size. The γ-isoform of tocotrienol was the most cardioprotective of all the isomers followed by the α- and δ-isoforms. The molecular mechanisms of cardioprotection afforded by tocotrienol isoforms were probed by evaluating their respective abilities to stabilize the proteasome, allowing it to maintain a balance between prodeath and prosurvival signals. Our results demonstrated that tocotrienol isoforms reduced c-Src but increased the phosphorylation of Akt, thus generating a survival signal.


2010 ◽  
Vol 49 ◽  
pp. S219
Author(s):  
Dirk J. Bester ◽  
Krisztina Kupai ◽  
Tamas Csont ◽  
Gergo Szucs ◽  
Csaba Csonka ◽  
...  

2008 ◽  
Vol 22 (7) ◽  
pp. 617-627 ◽  
Author(s):  
David R. Okada ◽  
Zhonglin Liu ◽  
Delia Beju ◽  
Robert D. Okada ◽  
Gerald Johnson

1990 ◽  
Vol 18 (4a) ◽  
pp. 497-510 ◽  
Author(s):  
Peter G. Anderson ◽  
Stanley B. Digerness ◽  
Jerald L. Sklar ◽  
Paul J. Boor

The isolated perfused rat heart model can be used to evaluate cardiotoxicity, and is especially useful in distinguishing direct vs indirect cardiac injury. Various perfusion systems can be used to characterize the pathophysiologic as well as morphologic changes induced by drugs or chemicals of interest. The isolated perfused heart was used in the studies described herein to characterize the mechanism of allylamine cardiotoxicity. Rat hearts were perfused with Krebs-Henseleit buffer containing 10 mm allylamine and a latex balloon was inserted into the left ventricle to monitor pressure. Coronary flow in hearts perfused with 10 mm allylamine was similar to control hearts at 5, 10, and 30 min, but was reduced by 1 hr (11.5 ± 0.6 ml/min/g wet heart weight vs 16.0 ± 0.7, p < 0.01). Peak left ventricular systolic pressure increased in hearts perfused with allylamine for 5 min (156 ± 8 mm Hg vs 103 ± 9, p < 0.01), but by 2 hr was decreased compared to controls (89 ± 6 vs 105 ± 5, p < 0.05). End diastolic pressure was markedly increased at 2 hr (58 ± 3 vs 4 ± 0.8, p < 0.01). Morphologically, allylamine perfused hearts exhibited significant contraction band changes as well as numerous cells with marked swelling of the sarcoplasmic reticulum. The findings in this study suggest that allylamine produces direct myocardial damage that appears to be independent of coronary flow. These studies demonstrate that the isolated perfused rat heart model can be used to evaluate mechanisms of acute cardiotoxicity.


Sign in / Sign up

Export Citation Format

Share Document