scholarly journals Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury

2013 ◽  
Vol 3 (1) ◽  
pp. 23 ◽  
Author(s):  
Pierre Bouzat ◽  
Nathalie Sala ◽  
Jean-François Payen ◽  
Mauro Oddo
2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


Shock ◽  
2006 ◽  
Vol 26 (3) ◽  
pp. 290-295 ◽  
Author(s):  
Donald S. Prough ◽  
George C. Kramer ◽  
Tatsuo Uchida ◽  
Rachael T. Stephenson ◽  
Helen L. Hellmich ◽  
...  

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


2020 ◽  
Author(s):  
Nida Fatima

Abstract Traumatic Brain Injury is the leading cause of disability and mortality throughout the world. It temporarily or permanently impairs the brain function. Primary injury is induced by mechanical forces and occurs at the moment of injury while secondary brain damage may occurs hours or even days after the traumatic event. This injury may result from impairment or local decline in the cerebral blood flow. Decreases in cerebral blood flow are the result of local edema, hemorrhage or increased intracranial pressure. Although major progress has been made in understanding of the pathophysiology of this injury, this has not yet led to substantial improvements in outcome. Traumatic Brain Injury is associated with various complications including raised intracranial pressure, midline shift due to worsening of the volume of intracranial hematoma, cerebral vasospasm in traumatic sub arachnoid hemorrhage. Transcranial Doppler (TCD) has been utilized as a monitoring tool in the neurocritical care unit since it is non-invasive tool and that can be brought to bedside.However, its utility in using as a protocol in management of traumatic brain injury patients has not been studied.We hypothesized that daily TCD followed by early performance of Neuroimaging (CT scan) and Neurosurgical intervention will lead to improvement in clinical outcome.Our study’s design is Randomized Controlled Trial with neurosurgical intervention based upon the Intervention Group as the TCD-Monitoring/Neuroimaging vs Control Group as the Clinical Imaging/Neurological status. Our study’s outcome is 90 days’ clinical outcome (modified rankin scale) and Glasgow Coma Outcome Scale.


2018 ◽  
Vol 129 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Aditya Vedantam ◽  
Claudia S. Robertson ◽  
Shankar P. Gopinath

OBJECTIVEFew studies have reported on changes in quantitative cerebral blood flow (CBF) after decompressive craniectomy and the impact of these measures on clinical outcome. The aim of the present study was to evaluate global and regional CBF patterns in relation to cerebral hemodynamic parameters in patients after decompressive craniectomy for traumatic brain injury (TBI).METHODSThe authors studied clinical and imaging data of patients who underwent xenon-enhanced CT (XeCT) CBF studies after decompressive craniectomy for evacuation of a mass lesion and/or to relieve intractable intracranial hypertension. Cerebral hemodynamic parameters prior to decompressive craniectomy and at the time of the XeCT CBF study were recorded. Global and regional CBF after decompressive craniectomy was measured using XeCT. Regional cortical CBF was measured under the craniectomy defect as well as for each cerebral hemisphere. Associations between CBF, cerebral hemodynamics, and early clinical outcome were assessed.RESULTSTwenty-seven patients were included in this study. The majority of patients (88.9%) had an initial Glasgow Coma Scale score ≤ 8. The median time between injury and decompressive surgery was 9 hours. Primary decompressive surgery (within 24 hours) was performed in the majority of patients (n = 18, 66.7%). Six patients had died by the time of discharge. XeCT CBF studies were performed a median of 51 hours after decompressive surgery. The mean global CBF after decompressive craniectomy was 49.9 ± 21.3 ml/100 g/min. The mean cortical CBF under the craniectomy defect was 46.0 ± 21.7 ml/100 g/min. Patients who were dead at discharge had significantly lower postcraniectomy CBF under the craniectomy defect (30.1 ± 22.9 vs 50.6 ± 19.6 ml/100 g/min; p = 0.039). These patients also had lower global CBF (36.7 ± 23.4 vs 53.7 ± 19.7 ml/100 g/min; p = 0.09), as well as lower CBF for the ipsilateral (33.3 ± 27.2 vs 51.8 ± 19.7 ml/100 g/min; p = 0.07) and contralateral (36.7 ± 19.2 vs 55.2 ± 21.9 ml/100 g/min; p = 0.08) hemispheres, but these differences were not statistically significant. The patients who died also had significantly lower cerebral perfusion pressure (52 ± 17.4 vs 75.3 ± 10.9 mm Hg; p = 0.001).CONCLUSIONSIn the presence of global hypoperfusion, regional cerebral hypoperfusion under the craniectomy defect is associated with early mortality in patients with TBI. Further study is needed to determine the value of incorporating CBF studies into clinical decision making for severe traumatic brain injury.


Sign in / Sign up

Export Citation Format

Share Document