Annals of Intensive Care
Latest Publications


TOTAL DOCUMENTS

1131
(FIVE YEARS 496)

H-INDEX

54
(FIVE YEARS 19)

Published By Springer (Biomed Central Ltd.)

2110-5820, 2110-5820

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Martina Hermann ◽  
Daniel Laxar ◽  
Christoph Krall ◽  
Christina Hafner ◽  
Oliver Herzog ◽  
...  

Abstract Background Duration of invasive mechanical ventilation (IMV) prior to extracorporeal membrane oxygenation (ECMO) affects outcome in acute respiratory distress syndrome (ARDS). In coronavirus disease 2019 (COVID-19) related ARDS, the role of pre-ECMO IMV duration is unclear. This single-centre, retrospective study included critically ill adults treated with ECMO due to severe COVID-19-related ARDS between 01/2020 and 05/2021. The primary objective was to determine whether duration of IMV prior to ECMO cannulation influenced ICU mortality. Results During the study period, 101 patients (mean age 56 [SD ± 10] years; 70 [69%] men; median RESP score 2 [IQR 1–4]) were treated with ECMO for COVID-19. Sixty patients (59%) survived to ICU discharge. Median ICU length of stay was 31 [IQR 20.7–51] days, median ECMO duration was 16.4 [IQR 8.7–27.7] days, and median time from intubation to ECMO start was 7.7 [IQR 3.6–12.5] days. Fifty-three (52%) patients had a pre-ECMO IMV duration of > 7 days. Pre-ECMO IMV duration had no effect on survival (p = 0.95). No significant difference in survival was found when patients with a pre-ECMO IMV duration of < 7 days (< 10 days) were compared to ≥ 7 days (≥ 10 days) (p = 0.59 and p = 1.0). Conclusions The role of prolonged pre-ECMO IMV duration as a contraindication for ECMO in patients with COVID-19-related ARDS should be scrutinised. Evaluation for ECMO should be assessed on an individual and patient-centred basis.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dave A. Dongelmans ◽  
Fabian Termorshuizen ◽  
Sylvia Brinkman ◽  
Ferishta Bakhshi-Raiez ◽  
M. Sesmu Arbous ◽  
...  

Abstract Background To assess trends in the quality of care for COVID-19 patients at the ICU over the course of time in the Netherlands. Methods Data from the National Intensive Care Evaluation (NICE)-registry of all COVID-19 patients admitted to an ICU in the Netherlands were used. Patient characteristics and indicators of quality of care during the first two upsurges (N = 4215: October 5, 2020–January 31, 2021) and the final upsurge of the second wave, called the ‘third wave’ (N = 4602: February 1, 2021–June 30, 2021) were compared with those during the first wave (N = 2733, February–May 24, 2020). Results During the second and third wave, there were less patients treated with mechanical ventilation (58.1 and 58.2%) and vasoactive drugs (48.0 and 44.7%) compared to the first wave (79.1% and 67.2%, respectively). The occupancy rates as fraction of occupancy in 2019 (1.68 and 1.55 vs. 1.83), the numbers of ICU relocations (23.8 and 27.6 vs. 32.3%) and the mean length of stay at the ICU (HRs of ICU discharge = 1.26 and 1.42) were lower during the second and third wave. No difference in adjusted hospital mortality between the second wave and the first wave was found, whereas the mortality during the third wave was considerably lower (OR = 0.80, 95% CI [0.71–0.90]). Conclusions These data show favorable shifts in the treatment of COVID-19 patients at the ICU over time. The adjusted mortality decreased in the third wave. The high ICU occupancy rate early in the pandemic does probably not explain the high mortality associated with COVID-19.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Massart ◽  
Virginie Maxime ◽  
Pierre Fillatre ◽  
Keyvan Razazi ◽  
Alexis Ferré ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Piotr Szychowiak ◽  
Khanh Villageois-Tran ◽  
Juliette Patrier ◽  
Jean-François Timsit ◽  
Étienne Ruppé

AbstractThe composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter’s consequences. Last, we assess the means to prevent or correct microbiota alteration.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin J. Tobin ◽  
Amal Jubran

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Damas ◽  
Caroline Legrain ◽  
Bernard Lambermont ◽  
Nadia Dardenne ◽  
Julien Guntz ◽  
...  

Abstract Background Ventilator-associated pneumonia (VAP) causes increased mortality, prolonged hospital stay and increased healthcare costs. Prevention of VAP in intensive care units (ICUs) is currently based on several measures, and application of noble metal coating on medical devices has been shown to inhibit the bacterial adherence of microorganisms to the surface. The objective of this study was to evaluate the potential benefit of noble metal coating of endotracheal tubes for the prevention of VAP. Methods This was a multi-center, randomized, controlled, double-blind, prospective study including ventilated patients from nine ICUs from four hospital sites in Belgium. Patients were randomly intubated with identical appearing noble metal alloy (NMA) coated (NMA-coated group) or non-coated (control group) endotracheal tubes (ETT). Primary endpoint was the incidence of VAP. Secondary endpoints were the proportion of antibiotic days during ICU stay and tracheal colonization by pathogenic bacteria. Results In total, 323 patients were enrolled, 168 in the NMA-coated group and 155 in the control group. During ventilation, VAP occurred in 11 patients (6.5%) in the NMA-coated group and in 18 patients (11.6%) in the control group (p  = 0.11). A higher delay in VAP occurrence was observed in the NMA-coated group compared with the control group by Cox proportional hazards regression analysis (HR 0.41, 95% CI 0.19–0.88, p  = 0.02). The number of antibiotic days was 58.8% of the 1,928 ICU days in the NMA-coated group and 65.4% of the 1774 ICU days in the control group (p  = 0.06). Regarding tracheal colonization, bacteria occurred in 38 of 126 patients in the NMA-coated group (30.2%) and in 37 of 109 patients in the control group (33.9%) (p  = 0.57). Conclusions This study provides preliminary evidence to support the benefit of noble metal coating in the prevention of VAP. A confirmatory study in a larger population would be valuable. Trial registration: Clinical trial number: NCT04242706 (http://www.clinicaltrials.gov)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clara Vigneron ◽  
Julien Charpentier ◽  
Sandrine Valade ◽  
Jérôme Alexandre ◽  
Samy Chelabi ◽  
...  

Abstract Background Major therapeutic advances including immunotherapy and targeted therapies have been changing the face of oncology and resulted in improved prognosis as well as in new toxic complications. The aim of this study is to appraise the trends in intensive care unit (ICU) admissions and outcomes of critically ill patients with solid malignancies. We performed a retrospective single-centre study over a 12-year period (2007–2018) including adult patients with solid malignancies requiring unplanned ICU admission. Admission patterns were classified as: (i) specific if directly related to the underlying cancer; (ii) non-specific; (iii) drug-related or procedural adverse events. Results 1525 patients were analysed. Lung and gastro-intestinal tract accounted for the two main tumour sites. The proportion of patients with metastatic diseases increased from 48.6% in 2007–2008 to 60.2% in 2017–2018 (p = 0.004). Critical conditions were increasingly related to drug- or procedure-related adverse events, from 8.8% of ICU admissions in 2007–2008 to 16% in 2017–2018 (p = 0.01). The crude severity of critical illness at ICU admission did not change over time. The ICU survival rate was 77.4%, without any significant changes over the study period. Among the 1279 patients with complete follow-up, the 1-year survival rate was 33.2%. Independent determinants of ICU mortality were metastatic disease, cancer in progression under treatment, admission for specific complications and the extent of organ failures (invasive and non-invasive ventilation, inotropes/vasopressors, renal replacement therapy and SOFA score). One-year mortality in ICU-survivors was independently associated with lung cancer, metastatic disease, cancer in progression under treatment, admission for specific complications and decision to forgo life-sustaining therapies. Conclusion Advances in the management and the prognosis of solid malignancies substantially modified the ICU admission patterns of cancer patients. Despite underlying advanced and often metastatic malignancies, encouraging short-term and long-term outcomes should help changing the dismal perception of critically ill cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakob Wollborn ◽  
Lars O. Hassenzahl ◽  
Daniel Reker ◽  
Hans Felix Staehle ◽  
Anne Marie Omlor ◽  
...  

Abstract Background The concomitant occurrence of the symptoms intravascular hypovolemia, peripheral edema and hemodynamic instability is typically named Capillary Leak Syndrome (CLS) and often occurs in surgical critical ill patients. However, neither a unitary definition nor standardized diagnostic criteria exist so far. We aimed to investigate common characteristics of this phenomenon with a subsequent scoring system, determining whether CLS contributes to mortality. Methods We conducted this single-center, observational, multidisciplinary, prospective trial in two separately run surgical ICUs of a tertiary academic medical center. 200 surgical patients admitted to the ICU and 30 healthy volunteers were included. Patients were clinically diagnosed as CLS or No-CLS group (each N = 100) according to the grade of edema, intravascular hypovolemia, hemodynamic instability, and positive fluid balance by two independent attending physicians with > 10 years of experience in ICU. We performed daily measurements with non-invasive body impedance electrical analysis, ultrasound and analysis of serum biomarkers to generate objective diagnostic criteria. Receiver operating characteristics were used, while we developed machine learning models to increase diagnostic specifications for our scoring model. Results The 30-day mortility was increased among CLS patients (12 vs. 1%, P = 0.002), while showing higher SOFA-scores. Extracellular water was increased in patients with CLS with higher echogenicity of subcutaneous tissue [29(24–31) vs. 19(16–21), P < 0.001]. Biomarkers showed characteristic alterations, especially with an increased angiopoietin-2 concentration in CLS [9.9(6.2–17.3) vs. 3.7(2.6–5.6)ng/mL, P < 0.001]. We developed a score using seven parameters (echogenicity, SOFA-score, angiopoietin-2, syndecan-1, ICAM-1, lactate and interleukin-6). A Random Forest prediction model boosted its diagnostic characteristics (AUC 0.963, P < 0.001), while a two-parameter decision tree model showed good specifications (AUC 0.865). Conclusions Diagnosis of CLS in critically ill patients is feasible by objective, non-invasive parameters using the CLS-Score. A simplified two-parameter diagnostic approach can enhance clinical utility. CLS contributes to mortality and should, therefore, classified as an independent entity. Trial Registration: German Clinical Trials Registry (DRKS No. 00012713), Date of registration 10/05/2017, www.drks.de Graphical Abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chie Tanaka ◽  
Takashi Tagami ◽  
Fumihiko Nakayama ◽  
Saori Kudo ◽  
Akiko Takehara ◽  
...  

Abstract Background Only a few studies have reported the association between age and mortality in COVID-19 patients who require invasive mechanical ventilation (IMV). We aimed to evaluate the effect of age on COVID-19-related mortality among patients undergoing IMV therapy. Methods This cohort study was conducted using the COVID-19 Registry Japan database, a nationwide multi-centre study of hospitalized patients with laboratory-confirmed COVID-19. Of all 33,808 cases registered between 1 January 2020 to 28 February 2021, we analysed 1555 patients who had undergone IMV. We evaluated mortality rates between age groups using multivariable regression analysis after adjusting for known potential components, such as within-hospital clustering, comorbidities, steroid use, medication for COVID-19, and vital signs on admission, using generalized estimation equation. Results By age group, the mortality rates in the IMV group were 8.6%, 20.7%, 34.9%, 49.7% and 83.3% for patients in their 50s, 60s, 70s, 80s, and 90s, respectively. Multivariable analysis showed that compared with those for patients aged < 60 years, the odds ratios (95% confidence interval) of death were 2.6 (1.6–4.1), 6.9 (4.2–11.3), 13.2 (7.2–24.1), 92.6 (16.7–515.0) for patients in their 60s, 70s, 80s, and 90s, respectively. Conclusions In this cohort study, age had a great effect on mortality in COVID-19 patients undergoing IMV, after adjusting for variables independently associated with mortality. This study suggested that age was associated with higher mortality and that preventing progression to severe COVID-19 in elderly patients may be a great public health issue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
◽  
Nadia Aissaoui ◽  
Virginie Amilien ◽  
Nadiejda Antier ◽  
Adrien Auvet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document