scholarly journals Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Huihui Pan ◽  
Weichao Sun ◽  
Qiming Sun ◽  
Huijun Gao

AbstractEnvironmental perception is one of the key technologies to realize autonomous vehicles. Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system. Those sensors are very sensitive to light or background conditions, which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running. In this paper, a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed. By introducing prior features to realize the lightweight network, the features of the input data can be extracted in real time. A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors. Through the temporal and spatial correlation between sensor data, the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time, eliminate the fault data, and ensure the accuracy and reliability of data fusion. Experiments show that the network achieves state-of-the-art results in speed and accuracy, and can accurately detect the location of the target when some sensors are out of focus or out of order. The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.

2020 ◽  
Author(s):  
Huihui Pan ◽  
Weichao Sun ◽  
Qiming Sun ◽  
Huijun Gao

Abstract Environmental perception is one of the key technologies to realize autonomous vehicles. Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system. Those sensors are very sensitive to light or background conditions, which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running. In this paper, a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed. By introducing prior features to realize the lightweight of the backbone network, the features of the input data can be extracted in real time accurately. Through the temporal and spatial correlation between sensor data, the sensor redundancy is utilized to diagnose the local and global condence of sensor data in real time, eliminate the fault data, and ensure the accuracy and reliability of data fusion. Experiments show that the network achieves the state-of-the-art results in speed and accuracy, and can accurately detect the location of the target when some sensors are out of focus or out of order.


2020 ◽  
Vol 11 (4) ◽  
pp. 57-71
Author(s):  
Qiuxia Liu

Using multi-sensor data fusion technology, ARM technology, ZigBee technology, GPRS, and other technologies, an intelligent environmental monitoring system is studied and developed. The SCM STC12C5A60S2 is used to collect the main environmental parameters in real time intelligently. The collected data is transmitted to the central controller LPC2138 through the ZigBee module ATZGB-780S5, and then the collected data is transmitted to the management computer through the GPRS communication module SIM300; thus, the real-time processing and intelligent monitoring of the environmental parameters are realized. The structure of the system is optimized; the suitable fusion model of environmental monitoring parameters is established; the hardware and the software of the intelligent system are completed. Each sensor is set up synchronously at the end of environmental parameter acquisition. The method of different value detection is used to filter out different values. The authors obtain the reliability of the sensor through the application of the analytic hierarchy process. In the analysis and processing of parameters, they proposed a new data fusion algorithm by using the reliability, probability association algorithm, and evidence synthesis algorithm. Through this algorithm, the accuracy of environmental monitoring data and the accuracy of judging monitoring data are greatly improved.


2019 ◽  
Vol 19 (11) ◽  
pp. 4211-4220 ◽  
Author(s):  
Gang Qian ◽  
Siliang Lu ◽  
Donghui Pan ◽  
Huasong Tang ◽  
Yongbin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document