scholarly journals Ovary resorption in the Norway lobster (Nephrops norvegicus) and its possible causes with special reference to sperm storage

2020 ◽  
Vol 74 (1) ◽  
Author(s):  
Carola Becker ◽  
Jaimie T. A. Dick ◽  
E. Mánus Cunningham ◽  
Mathieu Lundy ◽  
Ewen Bell ◽  
...  

Abstract The Norway lobster, Nephrops norvegicus, is an important fisheries species in the North-East Atlantic area. In some circumstances, mature females of Nephrops norvegicus can resorb their ovary rather than completing spawning, but the implications of this phenomenon to reproductive biology and fisheries sustainability are not known. To understand after effects of ovary resorption, we studied long-term demographic data sets (1994–2017) collected from the western Irish Sea and the North Sea. Our considerations focused on potential correlations among the frequency of resorption, female insemination, and body size of resorbing females. Resorption was continuously rare in the western Irish Sea (less than 1%); whereas much higher rates with considerable year-to-year variation were observed in the North Sea (mean 9%). Resorption started in autumn after the spawning season (summer) had passed. The frequency stayed high throughout winter and declined again in spring. As sperm limitation can occur in male-biased fisheries, we expected a lack of insemination could be responsible for resorption, but affected females were indeed inseminated. Resorbing females were significantly larger than other sexually mature females in the North Sea, but the opposite trend was observed in the western Irish Sea. It is therefore possible that other, environmental factors or seasonal shifts, may trigger females to resorb their ovaries instead of spawning. Resorption may as well represent a natural phenomenon allowing flexibility in the periodicity of growth and reproduction. In this sense, observations of annual versus biennial reproductive cycles in different regions may be closely linked to the phenomenon of ovary resorption.

Author(s):  
H. Barnes ◽  
T. B. Bagenal

The Dublin Prawn or Norway Lobster, Nephrops norvegicus (L.), is widely distributed on soft muddy bottoms, usually between 10 and 50 fathoms. It is found as far north as Iceland and the North Cape, is common in the North Sea and off the Atlantic shores of the British Isles, and extends as far south as the coast of Morocco; a variety, v. meridionalis (Zariquiey-Cenarro, 1935) is found in the Mediterranean and Adriatic (see Havinga, 1929, and Heldt & Heldt, 1931, for details of its distribution). Some aspects of the general biology of Nephrops have been dealt with by Höglund (1942) and Poulsen (1946) for Scandinavian waters, and by McIntosh (1904, 1908) and Storrow (1912)for the waters off north-east England. To a large extent all these workers relied on market catches.


Author(s):  
R.P. Briggs ◽  
R.J.A. Atkinson ◽  
M. McAliskey ◽  
A. Rogerson

Histriobdella homari is a polychaete annelid belonging to the Order Eunicida and Family Histriobdellidae. Histriobdella homari is normally found in the gill chambers or among the eggs of the lobster Homarus vulgaris from the English Channel (Roscoff) and in the southwestern part of the North Sea (George & Hartmann-Schroder, 1985). Two independent sightings of H. homari living on the pleopods of Nephrops norvegicus from the Irish Sea and Clyde Sea area are reported.


2019 ◽  
Vol 15 ◽  
pp. 142-144
Author(s):  
John Kennedy

Review(s) of: The medieval cultures of the Irish sea and the North Sea: Manannan and his neighbors, by MacQuarrie, Charles W., and Nagy, Joseph Falaky Nagy (eds), (Amsterdam: Amsterdam University Press, 2019) hardcover, 212 pages, 1 map, 4 figures, RRP euro99; ISBN 9789462989399.


1999 ◽  
Vol 42 (1-2) ◽  
pp. 167-181 ◽  
Author(s):  
N Madsen ◽  
T Moth-Poulsen ◽  
R Holst ◽  
D Wileman

Author(s):  
M. Edwards ◽  
A.W.G. John ◽  
H.G. Hunt ◽  
J.A. Lindley

Continuous Plankton Recorder records from the North Sea and north-east Atlantic from September 1997 to March 1998 indicate an exceptional influx of oceanic indicator species into the North Sea. These inflow events, according to historical evidence, have only occurred sporadically during this century. This exceptional inflow and previous inflow events are discussed in relation to their similarity in terms of their physical and climatic conditions.


Author(s):  
Robert Van de Noort

The North Sea is not renowned for its islands, and much of the modern land–sea interface is sharp, especially along the coasts of Jutland, North and South Holland and much of England. Nevertheless, the North Sea does contain a surprisingly large number of islands and archipelagos, which can be presented with reference to a clear north–south divide. In the northern half of the North Sea, most islands are of hard rock with shallow soils, and their islandness is the result of ongoing glacio-isostatic uplift of previously drowned lands and sea-level rise. With the exception of the Shetland and Orkney archipelagos, few of these islands are found at a great distance from the mainland, and the majority of the countless islands, islets, and rock outcrops off the North Sea coasts of Norway, Sweden, Scotland, and north-east England can be found within a few miles of the mainland. In the southern half of the North Sea, the islands are mainly made up of sand and clay and, in their history if not today, were frequently sandbanks formed by the sea utilizing both marine and riverine sediments. Most of the islands of the Wadden Sea in Denmark, Germany, and Holland are sandbanks elevated by aeolian-formed sand dunes. Further south, the core of the large islands of Zeeland is principally formed of riverine sands and marine clays intercalated with peat, reflecting coastal wetland conditions at various times in the Post-glacial and Holocene (Vos and Van Heeringen 1997). As with Zeeland, the islands on the English side of the North Sea, such as Mersey Island in the Blackwater estuary and Foulness Island in Essex, have now been incorporated into the mainland. Only a few islands cannot be so simply classified:Helgoland in the German Bight, a Sherwood Sandstone stack of Triassic date, is the best known example. Island archaeology, as we have seen (chapter 2), has for many decades approached islands as environments that were relatively isolated from the wider world.


Sign in / Sign up

Export Citation Format

Share Document