Helgoland Marine Research
Latest Publications


TOTAL DOCUMENTS

763
(FIVE YEARS 33)

H-INDEX

44
(FIVE YEARS 2)

Published By Springer-Verlag

1438-3888, 1438-387x

2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Baoyi Zhang ◽  
Manyi Li ◽  
Maoguo An ◽  
Chenglong Zhi ◽  
Qingcai Li ◽  
...  

AbstractIron (Fe) is an essential component for marine ecosystems, and it is related to the growth of phytoplankton communities and environmental evolution in coastal area. However, the effect of aquaculture activities on sediment Fe levels is not well studied. Fe levels and grain sizes are determined in two cores (respectively Core C in the culture area and Core A in the control area) in Sishili Bay to reveal the influence of cultivation on sediment Fe levels over an extended period. The sediment Fe levels are distinguished in the upper sections (culture period) but equal in the lower sections (non-culture period) of the two cores. The core C has the same Fe levels as Core A before 1950s (non-culture period). However, the sediment Fe levels of Core C increased during 1950s–1970s (the algae culture period) and decreased after the 1970s (shellfish culture period) compared with Core A, indicating the algae and shellfish culture impose opposite effects on sediment Fe levels. Similarly, sediment grain sizes are observed to be finer during the algae culture period but coarser during the shellfish culture period, and the variation of sediment grain sizes because of culture activities is the important factor affecting sediment Fe levels. The slowing down of ocean current due to algae culture causes finer particles and higher Fe levels in sediment. However, during the shellfish culture period, bio-deposition and re-suspension play major roles in coarsening sediment particles and decreasing sediment Fe levels.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Werner Armonies

AbstractAn extensive data set of macrozoobenthos from the eastern North Sea was evaluated in order to describe the distribution of infaunal species with respect to water depth and median grain size of the sediment. The resulting data are presented for 134 species, in 104 species abundance correlated significantly with water depth, with most species decreasing in abundance towards the hydrographically turbulent shallow areas. This suggests hydrography is a limiting factor for most of the species in this area while very few species only seem to favour the turbulent side of the gradient. With respect to median grain size, two thirds of the species showed significant abundance variations and one third did not. Most of the latter species were either represented by rather poor data or are known to be highly motile. Thus, true sediment generalists seem to be few. Conversely, no species was exclusively restricted to a single sediment type. Significant depth × sediment type interaction terms in a regression model indicate that abundance distribution over sediment types varied with depth level in 60% of the species, indicating that these populations were restricted to a part of their species-specific tolerated ranges in the study area. Hence, the distributional patterns over water depth and sediment types shown here represent realised niches. These data may help to locate populations and, in the light of global change, may serve as a baseline for future comparisons.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Arkadiy Reunov ◽  
Konstantin Lutaenko ◽  
Evgenia Vekhova ◽  
Junlong Zhang ◽  
Evgeny Zakharov ◽  
...  

AbstractAccording to COI DNA barcoding testing, the marine bivalve mollusc Mactra chinensis, which is native to the Asia-Pacific region, diverged into three species. These species were preliminary characterized as M. chinensis COI clade I, M. chinensis COI clade II and M. chinensis COI clade III. To find out whether it is possible to morphologically distinguish samples representing genetic clades, we examined the color of the shells and the structure of the spermatozoa. It was found that the number of detected coloration types exceeds the number of detected species. In addition, it was shown that individuals belonging to the same genetic clade can have shells of different colors. Consequently, it is impossible to choose one type of shell coloration as a species-specific trait. For sperm, the sperm morphological patterns found in each of the three species are consistent with the M. chinensis sperm model described in previous reports. However, the single sperm variant is also not applicable to discriminate between species derived from M. chinensis, since heterogeneous variants of spermatozoa differing in the length of the acrosomal rod were found. We hypothesized that genetic divergence of species could cause a shift towards predominance of one of the sperm variants, and that species-specific sperm morphs could be quantitatively dominant in molluscs belonging to different clades. However, the dominant sperm morphs were the same in COI clade I and COI clade III. Thus, dominant sperm morphs are useless as species-specific traits. However, shell color and sperm parameters are specific to different geographic regions, and it seems that unique environmental factors can determine shell color and sperm morphology. As a result, both shells and spermatozoa can be used to distinguish the geographical forms of M. chinensis, regardless of the belonging of the forms to a particular genetic clade. Here we propose the introduction of geographic identifiers, in which the shell color and parameters of sperm sets are used as morphological criteria to determine the geographical origin of mollusc specimens belonging to the M. chinensis species complex.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Sarina Schmidt ◽  
Joachim Schönfeld

AbstractSupratidal sands are vitally important for coastal defence in the German Wadden Sea. They are less affected by human activities than other areas as they are located far off the mainland shore, touristical and commercial activities are generally prohibited. Therefore, supratidal sands are of high ecological interest. Nevertheless, the faunal inventory and distribution pattern of microorganisms on these sands were studied very little. The composition of living and dead foraminiferal assemblages was therefore investigated along a transect from the supratidal sand Japsand up to Hallig Hooge. Both assemblages were dominated by calcareous foraminifera of which Ammonia batava was the most abundant species. Elphidium selseyense and Elphidium williamsoni were also common in the living assemblage, but Elphidium williamsoni was comparably rare in the dead assemblage. The high proportions of Ammonia batava and Elphidium selseyense in the living assemblage arose from the reproduction season that differed between species. While Ammonia batava and Elphidium selseyense just finished their reproductive cycles, Elphidium williamsoni was just about to start. This was also confirmed by the size distribution patterns of the different species. The dead assemblage revealed 20 species that were not found in the living assemblage of which some were reworked from older sediments (e.g., Bucella frigida) and some were transported via tidal currents from other areas in the North Sea (e.g., Jadammina macrescens). The living foraminiferal faunas depicted close linkages between the open North Sea and the mainland. Key species revealing exchange between distant populations were Haynesina germanica, Ammonia batava and different Elphidium species. All these species share an opportunistic behaviour and are able to inhabit a variety of different environments; hence, they well may cope with changing environmental conditions. The benthic foraminiferal association from Japsand revealed that transport mechanisms via tides and currents play a major ecological role and strongly influence the faunal composition at this site.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Lydia R. Becker ◽  
Ingrid Kröncke ◽  
Andreas Ehrenberg ◽  
Volkert Feldrappe ◽  
Kai Bischof

AbstractConcrete is a widely used building material in coastal constructions worldwide. However, limited natural resources used in the production process, as well as high CO2-emission due to the calcination process of limestone and the thermal energy demand for Portland cement clinker production, raise the demand for alternative constituents. Alternative mixture types should be environmentally friendly and, at best, mimic natural hard substrates. Here five different concrete mixtures, containing different cements (Portland cement and blast furnace cements) and aggregates (sand, gravel, iron ore and metallurgical slags) were made. Three replicate cubes (15 × 15 × 15 cm) of each type were then deployed in a German deep-water Port, the JadeWeserPort, to study benthic community establishment after one year. Results are compared to a similar experiment conducted in a natural hard ground environment (Helgoland Island, Germany). Results indicate marked differences in settled communities in the Port site compared to natural environments. At the Port site community composition did not differ with the concrete mixtures. Surface orientation of the cubes (front/top/back) revealed significant differences in species abundances and compositions. Cubes hold more neobiota in the Port site than in natural hard ground environments. Implications for the usage of new concrete mixtures are discussed.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Michael L. Zettler

AbstractIn 2019 the RV Meteor cruised from Guadalupe in April/May to Cape Verde in June/July and to Namibia in August/September. The distance is about 10,000 km. The ship has a moon pool for installation of instruments. In Cape Verde we had a first glimpse of the already sparsely populated moon pool. We reached Namibian waters in mid-August. In mid-September, 47 days later and 6000 km south, the ship's moon pool was sampled in the port of Walvis Bay. 13 different taxa could be identified belonging to two phyla, four classes, six orders and 10 families. Most of these species have not yet been observed in the port or in the adjacent areas and are new records for the entire Namibian coast. The goose barnacles Conchoderma auritum (Linnaeus, 1767), Conchoderma virgatum Spengler, 1789 and Lepas anatifera Linnaeus, 1758 were particularly noticeable. They were only surpassed by the large number of amphipods. The species Ericthonius brasiliensis (Dana, 1853), Jassa marmorata Holmes, 1905, Stenothoe senegalensis Krapp-Schickel, 2015 and Paracaprella pusilla Mayer, 1890 are particularly noteworthy here. In addition, the pycnogonid species Endeis straughani Clark, 1970 and the titan acorn barnacle Megabalanus coccopoma (Darwin, 1854) should be mentioned, which occurred very frequently as well. The present study shows, on the one hand, an example of the transatlantic spread of bioinvasive species by ships as vectors and, on the other hand, a convenient method for sampling ship hulls.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
G. Torres ◽  
R. R. Melzer ◽  
F. Spitzner ◽  
Z. Šargač ◽  
S. Harzsch ◽  
...  

AbstractCrustacean larvae have served as distinguished models in the field of Ecological Developmental Biology (“EcoDevo”) for many decades, a discipline that examines how developmental mechanisms and their resulting phenotype depend on the environmental context. A contemporary line of research in EcoDevo aims at gaining insights into the immediate tolerance of organisms and their evolutionary potential to adapt to the changing abiotic and biotic environmental conditions created by anthropogenic climate change. Thus, an EcoDevo perspective may be critical to understand and predict the future of organisms in a changing world. Many decapod crustaceans display a complex life cycle that includes pelagic larvae and, in many subgroups, benthic juvenile–adult stages so that a niche shift occurs during the transition from the larval to the juvenile phase. Already at hatching, the larvae possess a wealth of organ systems, many of which also characterise the adult animals, necessary for autonomously surviving and developing in the plankton and suited to respond adaptively to fluctuations of environmental drivers. They also display a rich behavioural repertoire that allows for responses to environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Cells, tissues, and organs are at the basis of larval survival, and as the larvae develop, their organs continue to grow in size and complexity. To study organ development, researchers need a suite of state-of-the-art methods adapted to the usually very small size of the larvae. This review and the companion paper set out to provide an overview of methods to study organogenesis in decapod larvae. This first section focuses on larval rearing, preparation, and fixation, whereas the second describes methods to study cells, tissues, and organs.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
R. R. Melzer ◽  
F. Spitzner ◽  
Z. Šargač ◽  
M. K. Hörnig ◽  
J. Krieger ◽  
...  

AbstractCells and tissues form the bewildering diversity of crustacean larval organ systems which are necessary for these organisms to autonomously survive in the plankton. For the developmental biologist, decapod crustaceans provide the fascinating opportunity to analyse how the adult organism unfolds from organ Anlagen compressed into a miniature larva in the sub-millimetre range. This publication is the second part of our survey of methods to study organogenesis in decapod crustacean larvae. In a companion paper, we have already described the techniques for culturing larvae in the laboratory and dissecting and chemically fixing their tissues for histological analyses. Here, we review various classical and more modern imaging techniques suitable for analyses of eidonomy, anatomy, and morphogenetic changes within decapod larval development, and protocols including many tips and tricks for successful research are provided. The methods cover reflected-light-based methods, autofluorescence-based imaging, scanning electron microscopy, usage of specific fluorescence markers, classical histology (paraffin, semithin and ultrathin sectioning combined with light and electron microscopy), X-ray microscopy (µCT), immunohistochemistry and usage of in vivo markers. For each method, we report our personal experience and give estimations of the method’s research possibilities, the effort needed, costs and provide an outlook for future directions of research.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Antony E. Briceño-Vera ◽  
Enrique Ávila ◽  
María A. Rodríguez-Santiago ◽  
Alejandro Ruiz-Marín

AbstractAmong the ecological roles that sponges play in marine ecosystems, one of the highlights is their ability to host a wide diversity and abundance of epibenthic organisms. However, of the different marine environments, this role has been less investigated in seagrass-dwelling sponges. In this study, the main objective was to determine whether the structure of the associated faunal assemblages in two common sympatric species of seagrass-dwelling sponges (Amorphinopsis atlantica and Haliclona implexiformis) vary depending on the volume and morphology of the host sponge as well as the environment to which both sponges are exposed. Even though the collection sites had the same habitat type (seagrass meadows composed by Thalassia testudinum and Halodule wrightii) and depth, there were substantial differences in faunal composition (ANOSIM test, R = 0.86) between both sponge species. The value of the data on species richness, diversity, and abundance of associated organisms was significantly higher in the individuals of A. atlantica than in those of H. implexiformis. These differences in the community structure of associated fauna could be influenced by the differential growth form of the hosts (e.g. growth form and oscula diameter) as well as their distinct environmental preferences (sites with different degrees of exposure to wind-generated waves and levels of human disturbance). This study contributes to the knowledge on the functional role that sponges play in seagrass meadows, one of the world’s most endangered ecosystems. Furthermore, it underlines the importance of examining both, the sponge morphology and the local environmental conditions, to explain spatial variations in the macrofaunal assemblages associated with sponges.


2020 ◽  
Vol 74 (1) ◽  
Author(s):  
Pedro de Jesús Castellanos-Pérez ◽  
Laura Elena Vázquez-Maldonado ◽  
Enrique Ávila ◽  
José Antonio Cruz-Barraza ◽  
Julio César Canales-Delgadillo

AbstractSponges are one of the most conspicuous groups of epibionts in mangrove prop root habitats. However, with the exception of the Caribbean and the Indo-Pacific regions, studies focused on species diversity are lacking in other locations that have high mangrove coverage and are relatively distant from coral reef environments. Because mangrove-root epibiont communities, in general, have been understudied worldwide, this research contributes to filling this knowledge gap. In this study, a total of 30 sponge species (belonging to three subclasses, 14 families and 19 genera) were recorded as epibionts on prop roots of the red mangrove Rhizophora mangle in a tropical coastal ecosystem of the Southern Gulf of Mexico. Of these, five were new records for the Gulf of Mexico, 14 were new for the Mexican coasts of the gulf and 25 were new for the study area. Moreover, a similarity analysis based on presence/absence data of mangrove-associated sponges reported throughout the Western Central Atlantic region revealed that the sponge assemblage from the study area was more similar to those documented in most of the Caribbean locations (Jamaica, Cuba, Martinique, Panama, Venezuela, Belize and Colombia) rather than with those of the Northeast of the Gulf of Mexico, Guadeloupe and Trinidad. This relative intra-regional dissimilarity in the structure of mangrove-associated sponge assemblages may be related to differences in environmental conditions as well as taxonomic effort. The study area, unlike most of the Caribbean locations, is characterized by estuarine conditions and high productivity throughout the year. The inter-site variability recorded in the composition of mangrove-associated sponges was influenced by a set of factors such as salinity, dissolved oxygen and hydrodynamism. This study shows the importance of exploring the mangrove-associated sponge assemblages from different regions of the world as it furthers knowledge of the biodiversity and global distribution of this group.


Sign in / Sign up

Export Citation Format

Share Document