scholarly journals Advantages of imaging photoplethysmography for migraine modeling: new optical markers of trigemino‐vascular activation in rats

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexey Y. Sokolov ◽  
Maxim A. Volynsky ◽  
Valery V. Zaytsev ◽  
Anastasiia V. Osipchuk ◽  
Alexei A. Kamshilin

Abstract Background Existent animal models of migraine are not without drawbacks and limitations. The aim of our study was to evaluate imaging photoplethysmography (PPG) as a method of assessing intracranial blood flow in rats and its changes in response to electrical stimulation of dural trigeminal afferents. Methods Experiments were carried out with 32 anesthetized adult male Wistar rats. Trigeminovascular system (TVS) was activated by means of electrical stimulation of dural afferents through a closed cranial window (CCW). Parameters of meningeal blood flow were monitored using a PPG imaging system under green illumination with synchronous recording of an electrocardiogram (ECG) and systemic arterial blood pressure (ABP). Two indicators related to blood-flow parameters were assessed: intrinsic optical signals (OIS) and the amplitude of pulsatile component (APC) of the PPG waveform. Moreover, we carried out pharmacological validation of these indicators by determining their sensitivity to anti-migraine drugs: valproic acid and sumatriptan. For statistical analysis the non-parametric tests with post-hoc Bonferroni correction was used. Results Significant increase of both APC and OIS was observed due to CCW electrical stimulation. Compared to saline (n = 11), intravenous administration of both the sumatriptan (n = 11) and valproate (n = 10) by using a cumulative infusion regimen (three steps performed 30 min apart) lead to significant inhibitory effect on the APC response to the stimulation. In contrast, intravenous infusion of any substance or saline did not affect the OIS response to the stimulation. It was found that infusion of either sumatriptan or valproate did not affect the response of ABP or heart rate to the stimulation. Conclusions Imaging PPG can be used in an animal migraine model as a method for contactless assessment of intracranial blood flow. We have identified two new markers of TVS activation, one of which (APC) was pharmacologically confirmed to be associated with migraine. Monitoring of changes in APC caused by CCW electrical stimulation (controlling efficiency of stimulation by OIS) can be considered as a new way to assess the peripheral mechanism of action of anti-migraine interventions.

1990 ◽  
Vol 10 (3) ◽  
pp. 383-391 ◽  
Author(s):  
Norihiro Suzuki ◽  
Jan Erik Hardebo ◽  
Jan Kåhrström ◽  
Christer Owman

Recently, the origins and pathways of cerebrovascular acetylcholine- and vasoactive intestinal polypeptide-containing nerves have been elucidated in detail in the rat: The sphenopalatine ganglion is the major source for postganglionic parasympathetic fibers to the vascular beds of the cerebral hemispheres. To clarify the functional role of the nerves on cerebral blood vessels in vivo, brain cortical microvascular blood flow was measured in rats during electrical stimulation of these particular postganglionic fibers. Animals were subjected to transection of the right nasociliary nerve 2 weeks before the flow measurements to eliminate activation of peptidergic sensory fibers. Relative change in microvascular blood flow was continuously recorded by a laser-Doppler flowmeter system under α-chloralose anesthesia. The postganglionic fibers were electrically stimulated just proximal to the ethmoidal foramen by a bipolar platinum electrode (5 V; 0.5 ms; 3, 10, 30, 60 Hz; as a continuous stimulation for 90 s). Stimulation at 10 Hz induced a marked increase of the cortical blood flow (CoBF) on the ipsilateral side, whereas no change was observed on the contralateral side. It reached a maximum mean value of 42.5% at 46 s, and then slightly declined during the remaining stimulation period. No significant changes were observed in the mean arterial blood pressure or blood gases during or after stimulation. Both atropine and scopolamine failed to alter this flow increase. Electrical stimulation of the postganglionic fibers at different frequencies revealed a maximal increase in the CoBF at 30 Hz in the control situation (47.2%), but at 10 Hz after scopolamine administration (51.6%). This provides the first report showing that selective postganglionic stimulation of the parasympathetic nerve fibers markedly enhances blood flow in the brain, and it supports the view that the neurogenic vasodilatation is primarily noncholinergic.


2001 ◽  
Vol 62 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Y. Qi ◽  
B. Gazelius ◽  
B. Linderoth ◽  
O. Löfgren ◽  
O. Gribbe ◽  
...  

1993 ◽  
Vol 113 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Tian-Ying Ren ◽  
E. Laurikainen ◽  
W. S. Quirk ◽  
J. M. Miller ◽  
A. L. Nuttall

2005 ◽  
Vol 288 (6) ◽  
pp. G1195-G1198 ◽  
Author(s):  
Shi Liu ◽  
Lijie Wang ◽  
J. D. Z. Chen

Gastric electrical stimulation (GES) has been shown to alter motor and sensory functions of the stomach. However, its effects on other organs of the gut have rarely been investigated. The study was performed in 12 dogs implanted with two pairs of electrodes, one on the serosa of the stomach and the other on the colon. The study was composed of two experiments. Experiment 1 was designed to study the effects of GES on rectal tone and compliance in nine dogs compared with colonic electrical stimulation (CES). Rectal tone and compliance were assessed before and after GES or CES. Experiment 2 was performed to study the involvement of sympathetic pathway in 8 of the 12 dogs. The rectal tone was recorded for 30–40 min at baseline and 20 min after intravenous guanethidine. GES or CES was given for 20 min 20 min after the initiation of the infusion. It was found that both GES and CES reduced rectal tone with comparable potency. Rectal compliance was altered neither with GES, nor with CES. The inhibitory effect of GES but not CES on rectal tone was abolished by an adrenergic blockade, guanethidine. GES inhibited rectal tone with a comparable potency with CES but did not alter rectal compliance. The inhibitory effect of GES on rectal tone is mediated by the sympathetic pathway. It should be noted that electrical stimulation of one organ of the gut may have a beneficial or adverse effect on another organ of the gut.


1997 ◽  
Vol 17 (6) ◽  
pp. 686-694 ◽  
Author(s):  
Elvire Vaucher ◽  
Josiane Borredon ◽  
Gilles Bonvento ◽  
Jacques Seylaz ◽  
Pierre Lacombe

We earlier reported that electrical stimulation of the rat nucleus basalis of Meynert (NBM) induces large cerebral blood flow increases, particularly in frontal cortical areas but also in some subcortical regions. The present study was designed to address the issue of blood flow control exerted by NBM projections. To this aim, we have determined whether these flow increases were associated with proportionate changes in metabolic activity as evaluated by cerebral glucose utilization (CGU) strictly under the same experimental conditions in the conscious rat. An electrode was chronically implanted in a reactive site of the NBM as determined by laser-Doppler flowmetry (LDF) of the cortical circulation. One to two weeks later, while the cortical blood flow was monitored by LDF, we measured CGU using the [14C]2-deoxyglucose autoradiographic technique during unilateral electrical stimulation of the NBM, and analyzed the local flow-metabolism relationship. The large increases in cortical blood flow induced by NBM stimulation, exceeding 300% in various frontal areas, were associated with at most 24% increases in CGU (as compared with the control group) in one frontal area. By contrast, strong increases in CGU exceeding 150% were observed in subcortical regions ipsilateral to the stimulation, especially in extrapyramidal structures, associated with proportionate CBF changes. Thus, none of the blood flow changes observed in the cortex can be ascribed to an increased metabolic activity, whereas CBF and CGU were coupled in many subcortical areas. This result indicates that different mechanisms, which do not necessarily involve any metabolic factor, contribute to the regulation of the cerebral circulation at the cortical and subcortical level. Because the distribution of the uncoupling is coincident with that of cholinergic NBM projections directly reaching cortical microvessels, these data strongly support the hypothesis that NBM neurons are capable of exerting a neurogenic control of the cortical microcirculation.


2010 ◽  
Vol 59 (6) ◽  
pp. 452-459 ◽  
Author(s):  
Alexander Friedman ◽  
Elad Lax ◽  
Yahav Dikshtein ◽  
Lital Abraham ◽  
Yakov Flaumenhaft ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document