scholarly journals A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Linyu Wang ◽  
Xiaodan Zhong ◽  
Shuo Wang ◽  
Hao Zhang ◽  
Yuanning Liu

Abstract Background Studies have shown that RNA secondary structure, a planar structure formed by paired bases, plays diverse vital roles in fundamental life activities and complex diseases. RNA secondary structure profile can record whether each base is paired with others. Hence, accurate prediction of secondary structure profile can help to deduce the secondary structure and binding site of RNA. RNA secondary structure profile can be obtained through biological experiment and calculation methods. Of them, the biological experiment method involves two ways: chemical reagent and biological crystallization. The chemical reagent method can obtain a large number of prediction data, but its cost is high and always associated with high noise, making it difficult to get results of all bases on RNA due to the limited of sequencing coverage. By contrast, the biological crystallization method can lead to accurate results, yet heavy experimental work and high costs are required. On the other hand, the calculation method is CROSS, which comprises a three-layer fully connected neural network. However, CROSS can not completely learn the features of RNA secondary structure profile since its poor network structure, leading to its low performance. Results In this paper, a novel end-to-end method, named as “RPRes, was proposed to predict RNA secondary structure profile based on Bidirectional LSTM and Residual Neural Network. Conclusions RPRes utilizes data sets generated by multiple biological experiment methods as the training, validation, and test sets to predict profile, which can compatible with numerous prediction requirements. Compared with the biological experiment method, RPRes has reduced the costs and improved the prediction efficiency. Compared with the state-of-the-art calculation method CROSS, RPRes has significantly improved performance.

2021 ◽  
Author(s):  
Rohan V. Koodli ◽  
Boris Rudolfs ◽  
Hannah K. Wayment-Steele ◽  
Rhiju Das ◽  

AbstractThe rational design of RNA is becoming important for rapidly developing technologies in medicine and biochemistry. Recent work has led to the development of several RNA secondary structure design algorithms and corresponding benchmarks to evaluate their performance. However, the performance of these algorithms is linked to the nature of the underlying algorithms for predicting secondary structure from sequences. Here, we show that an online community of RNA design experts is capable of modifying an existing RNA secondary structure design benchmark (Eterna100) with minimal alterations to address changes in the folding engine used (Vienna 1.8 updated to Vienna 2.4). We tested this new Eterna100-V2 benchmark with five RNA design algorithms, and found that neural network-based methods exhibited reduced performance in the folding engine they were evaluated on in their respective papers. We investigated this discrepancy, and determined that structural features, previously classified as difficult, may be dependent on parameters inherent to the RNA energy function itself. These findings suggest that for optimal performance, future algorithms should focus on finding strategies capable of solving RNA secondary structure design benchmarks independently of the free energy benchmark used. Eterna100-V1 and Eterna100-V2 benchmarks and example solutions are freely available at https://github.com/eternagame/eterna100-benchmarking.


Sign in / Sign up

Export Citation Format

Share Document