scholarly journals Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation

BMC Genomics ◽  
2019 ◽  
Vol 20 (S10) ◽  
Author(s):  
Hao-Chun Chang ◽  
Hsuan-Cheng Huang ◽  
Hsueh-Fen Juan ◽  
Chia-Lang Hsu

Abstract Background Super-enhancer RNAs (seRNAs) are a kind of noncoding RNA transcribed from super-enhancer regions. The regulation mechanism and functional role of seRNAs are still unclear. Although super-enhancers play a critical role in the core transcriptional regulatory circuity of embryonic stem cell (ESC) differentiation, whether seRNAs have similar properties should be further investigated. Results We analyzed cap analysis gene expression sequencing (CAGE-seq) datasets collected during the differentiation of embryonic stem cells (ESCs) to cardiomyocytes to identify the seRNAs. A non-negative matrix factorization algorithm was applied to decompose the seRNA profiles and reveal two hidden stages during the ESC differentiation. We further identified 95 and 78 seRNAs associated with early- and late-stage ESC differentiation, respectively. We found that the binding sites of master regulators of ESC differentiation, including NANOG, FOXA2, and MYC, were significantly observed in the loci of the stage-specific seRNAs. Based on the investigation of genes coexpressed with seRNA, these stage-specific seRNAs might be involved in cardiac-related functions such as myofibril assembly and heart development and act in trans to regulate the co-expressed genes. Conclusions In this study, we used a computational approach to demonstrate the possible role of seRNAs during ESC differentiation.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4202-4202
Author(s):  
Zheng Wang ◽  
Pramono Andri ◽  
Skokowa Julia ◽  
Welte Karl

Abstract Thrombopoetin (TPO) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice and in congenital amegakaryocytic thrombocytopenia-patients with non-sense c-mpl mutation who develop pancytopenia during the first years of life suggest that TPO also play an important role on early hematopoesis. We demonstrated that TPO enhances FLK-1 (VEGF-receptor) expression on hemangioblasts during murine embryonic stem cell differentiation in embryoid body-liquid cultures (up to 73%). To extend our studies, we investigated the TPO signaling in FLK-1 positive cells. ES cells at different time point of differentiation showed that TPO enhances c-mpl-, BMP4-, Notch-, HOXB4-, HOXB9-, HOXA10-, Runx1-and CD133- mRNA expression. To investigate mesoderm formation, we also analyzed GATA-4 and T-brachyury mRNA level expression. Interestingly, we found that TPO alone did not increase GATA-4- and T-brachyury- mRNA expression, suggesting that TPO requires other cytokines to form the mesoderm. We also found that TPO could maintain VEGF-A mRNA expression level during differentiation of ES-cells. We hypothesize that VEGF expression together with c-mpl expression is required in hematopoetic differentiation of ES cell. This activity of Tpo was also observed during Rhesus monkey embryonic stem cell differentiation into hematopoetic cell. Only combinations of TPO and VEGF were capable of increasing CD34 positive hematopoietic progenitor cells (up to 8%), but TPO alone failed to induce high levels of CD34+ cell. In addition, analysis of gene expression during hemangioblast development demonstrated that TPO was capable of increasing the expression of VEGF receptors (FLK-1) and TPO receptors (c-mpl) in mice and primates. The in-vitro differentiation of mouse and rhesus monkey ES cells provides an opportunity to better understand the role of TPO in the early stage of hematopoietic development from ES cells to mature hematopoietic cells.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79867 ◽  
Author(s):  
Peng Li ◽  
Ying Chen ◽  
Kinglun Kingston Mak ◽  
Chun Kwok Wong ◽  
Chi Chiu Wang ◽  
...  

2011 ◽  
Vol 219 (2) ◽  
pp. 468-474 ◽  
Author(s):  
Shintaro Yamaguchi ◽  
Kenichi Yamahara ◽  
Koichiro Homma ◽  
Sayuri Suzuki ◽  
Shizuka Fujii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document