pancreatic β cell
Recently Published Documents


TOTAL DOCUMENTS

1605
(FIVE YEARS 333)

H-INDEX

96
(FIVE YEARS 10)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Florine Bornaque ◽  
Clément Philippe Delannoy ◽  
Emilie Courty ◽  
Nabil Rabhi ◽  
Charlène Carney ◽  
...  

Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic β cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic β cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic β-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic β cells, playing a key role in the control of gene expression and pancreatic β-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease.


2022 ◽  
Author(s):  
Ada Admin ◽  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


Diabetes ◽  
2022 ◽  
Author(s):  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
Yue Liu ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


2022 ◽  
Author(s):  
Ada Admin ◽  
Qianxing Hu ◽  
Jinming Mu ◽  
Yuhong Liu ◽  
Yue Yang ◽  
...  

Pancreatic β-cell adapt to compensate for increased metabolic demand during obesity. Although the microRNA (miRNA) pathway has an essential role in β-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated β-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory β-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly-A tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting β-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of β-cells to meet metabolic demand during obesity.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Zhenhuan Jiang ◽  
Gang Wang ◽  
Lingling Meng ◽  
Yunzhao Tang ◽  
Min Yang ◽  
...  

Background. Elevated uric acid (UA) has been found to damage pancreatic β-cell, promote oxidative stress, and cause insulin resistance in type 2 diabetes (T2D). Astragaloside IV (AS-IV), a major active monomer extracted from Astragalus membranaceus (Fisch.) Bunge. which belongs to TRIB. Galegeae (Br.) Torrey et Gray, Papilionaceae, exhibits various activities in a pathophysiological environment and has been widely employed to treat diseases. However, the effects of AS-IV on UA-induced pancreatic β-cell damage need to be investigated and the associating mechanism needs to be elucidated. This study was designed to determine the protective effects and underlying mechanism of AS-IV on UA-induced pancreatic β-cell dysfunction in T2D. Methods. UA-treated Min6 cells were exposed to AS-IV or wortmannin. Thereafter, the 3-(45)-dimethylthiahiazo(-z-y1)-35-di-phenytetrazoliumromide (MTT) assay and flow cytometry were employed to determine the effect of AS-IV on cell proliferation and apoptosis, respectively. Insulin secretion was evaluated using the glucose-stimulated insulin secretion (GSIS) assay. Finally, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to determine the effect of AS-IV on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway in UA-treated cells. Results. AS-IV had no cytotoxic effects on Min6 cells. UA significantly suppressed Min6 cell growth, promoted cell apoptosis, and enhanced caspase-3 activity; however, AS-IV abolished these effects in a dose-dependent manner. Further, decreased insulin secretion was found in UA-treated Min6 cells compared to control cells, and the production of insulin was enhanced by AS-IV in a dose-dependent manner. AS-IV significantly increased phosphorylated (p)-AKT expression and the ratio of p-AKT/AKT in Min6 cells exposed to UA. No evident change in AKT mRNA level was found in the different groups. However, the effects of AS-IV on UA-stimulated Min6 cells were reversed by 100 nM wortmannin. Conclusion. Collectively, our data suggest that AS-IV protected pancreatic β-cells from UA-treated dysfunction by activating the PI3K/AKT pathway. Such findings suggest that AS-IV may be an efficient natural agent against T2D.


2022 ◽  
Vol 88 ◽  
pp. 104890
Author(s):  
Qian He ◽  
Jia-Ying Xu ◽  
Jia Gu ◽  
Xing Tong ◽  
Zhongxiao Wan ◽  
...  

2022 ◽  
Vol Volume 15 ◽  
pp. 93-102
Author(s):  
Fan Yang ◽  
Shengxun Zhao ◽  
Xuyan Zhang ◽  
Sheng Ding ◽  
Yancheng Xu

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Sebastian Hauke ◽  
Jona Rada ◽  
Gergely Tihanyi ◽  
Danny Schilling ◽  
Carsten Schultz

Sign in / Sign up

Export Citation Format

Share Document