scholarly journals Correction to: Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam Doelman ◽  
Seth Tigchelaar ◽  
Brian McConeghy ◽  
Sunita Sinha ◽  
Martin S. Keung ◽  
...  
2013 ◽  
Vol 30 (3) ◽  
pp. 142-159 ◽  
Author(s):  
Jae H. T. Lee ◽  
Claire F. Jones ◽  
Elena B. Okon ◽  
Lisa Anderson ◽  
Seth Tigchelaar ◽  
...  

Spinal Cord ◽  
2010 ◽  
Vol 49 (3) ◽  
pp. 463-471 ◽  
Author(s):  
J Zariffa ◽  
J L K Kramer ◽  
J W Fawcett ◽  
D P Lammertse ◽  
A R Blight ◽  
...  

2020 ◽  
Vol 598 (5) ◽  
pp. 929-942 ◽  
Author(s):  
Christopher R. West ◽  
Malihe‐Sadat Poormasjedi‐Meibod ◽  
Neda Manouchehri ◽  
Alexandra M. Williams ◽  
Erin L. Erskine ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam Doelman ◽  
Seth Tigchelaar ◽  
Brian McConeghy ◽  
Sunita Sinha ◽  
Martin S. Keung ◽  
...  

Abstract Background The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. Results We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, “SCI-acute stage”, during which many of these bacterial fluctuations occur before returning to “baseline” levels. Conclusion This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.


Author(s):  
Hao Zhang ◽  
Alexander Younsi ◽  
Guoli Zheng ◽  
Mohamed Tail ◽  
Anna-Kathrin Harms ◽  
...  

Abstract Purpose The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury to the central nervous system (CNS). We, therefore, investigated the effects of intrathecal Shh-administration in the subacute phase after thoracic spinal cord injury (SCI) on secondary injury processes in rats. Methods Twenty-one Wistar rats were subjected to thoracic clip-contusion/compression SCI at T9. Animals were randomized into three treatment groups (Shh, Vehicle, Sham). Seven days after SCI, osmotic pumps were implanted for seven-day continuous intrathecal administration of Shh. Basso, Beattie and Bresnahan (BBB) score, Gridwalk test and bodyweight were weekly assessed. Animals were sacrificed six weeks after SCI and immunohistological analyses were conducted. The results were compared between groups and statistical analysis was performed (p < 0.05 was considered significant). Results The intrathecal administration of Shh led to significantly increased polarization of macrophages toward the anti-inflammatory M2-phenotype, significantly decreased T-lymphocytic invasion and significantly reduced resident microglia six weeks after the injury. Reactive astrogliosis was also significantly reduced while changes in size of the posttraumatic cyst as well as the overall macrophagic infiltration, although reduced, remained insignificant. Finally, with the administration of Shh, gain of bodyweight (216.6 ± 3.65 g vs. 230.4 ± 5.477 g; p = 0.0111) and BBB score (8.2 ± 0.2 vs. 5.9 ± 0.7 points; p = 0.0365) were significantly improved compared to untreated animals six weeks after SCI as well. Conclusion Intrathecal Shh-administration showed neuroprotective effects with attenuated neuroinflammation, reduced astrogliosis and improved functional recovery six weeks after severe contusion/compression SCI.


2019 ◽  
Vol 24 (1) ◽  
pp. 174-177 ◽  
Author(s):  
Masaaki Machino ◽  
Shiro Imagama ◽  
Keigo Ito ◽  
Kei Ando ◽  
Kazuyoshi Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document