scholarly journals Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yang Yu ◽  
Zhaowei Teng ◽  
Zongmin Mou ◽  
Yan Lv ◽  
Tao Li ◽  
...  

Abstract Background Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation. Results A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots. Conclusions Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals.

2020 ◽  
Author(s):  
Yang Yu ◽  
Zhaowei Teng ◽  
Zongmin Mou ◽  
Yan Lv ◽  
Tao Li ◽  
...  

Abstract Background: Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation.Results: A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots.Conclusions: Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals.


2020 ◽  
Author(s):  
Yang Yu ◽  
Zhaowei Teng ◽  
Zongmin Mou ◽  
Yan Lv ◽  
Tao Li ◽  
...  

Abstract Background: The high antioxidant capacity of melatonin contributing to heavy metal tolerance for plants and animals is widely studied, while researches on microorganisms especially in filamentous fungi are rare. One typical dark septate endophyte (DSE), Exophiala pisciphila, showed significant resistance to heavy metals.Results: In this study, exogenous melatonin was verified to reduce heavy metal damage via relieving oxidative stress, activating antioxidant systems, and decreasing heavy metal accumulation in E. pisciphila. Melatonin biosynthesis enzyme genes were upregulated under heavy metal stress. Furthermore, the overexpression of E. pisciphila TDC1 (EpTDC1) and E. pisciphila ASMT1 (EpASMT1) responsible for melatonin biosynthesis in Escherichia coli and Arabidopsis thaliana, enhanced heavy metal stress tolerance for the two organisms by lowering the oxidative stress and reducing the Cd accumulation in the whole plants, especially in the roots.Conclusions: Our results indicate that melatonin confers heavy metal resistance in E. pisciphila by lowering oxidative stress and heavy metal accumulation.


2005 ◽  
Vol 97 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Hebe A. Carreras ◽  
Eduardo D. Wannaz ◽  
Carlos A. Perez ◽  
María L. Pignata

RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38379-38403
Author(s):  
Asfa Rizvi ◽  
Almas Zaidi ◽  
Fuad Ameen ◽  
Bilal Ahmed ◽  
Muneera D. F. AlKahtani ◽  
...  

Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety.


2016 ◽  
Author(s):  
Devan Fitzpatrick ◽  
◽  
Alyssa E. Shiel ◽  
Bruce McCune

Sign in / Sign up

Export Citation Format

Share Document