scholarly journals How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Mirjam Moerbeek ◽  
Sander van Schie
2020 ◽  
Vol 42 (3) ◽  
pp. 354-374
Author(s):  
Jessaca Spybrook ◽  
Qi Zhang ◽  
Ben Kelcey ◽  
Nianbo Dong

Over the past 15 years, we have seen an increase in the use of cluster randomized trials (CRTs) to test the efficacy of educational interventions. These studies are often designed with the goal of determining whether a program works, or answering the what works question. Recently, the goals of these studies expanded to include for whom and under what conditions an intervention is effective. In this study, we examine the capacity of a set of CRTs to provide rigorous evidence about for whom and under what conditions an intervention is effective. The findings suggest that studies are more likely to be designed with the capacity to detect potentially meaningful individual-level moderator effects, for example, gender, than cluster-level moderator effects, for example, school type.


2020 ◽  
Vol 29 (9) ◽  
pp. 2470-2480
Author(s):  
Ariane M Mbekwe Yepnang ◽  
Agnès Caille ◽  
Sandra M Eldridge ◽  
Bruno Giraudeau

In cluster randomized trials, the intraclass correlation coefficient (ICC) is classically used to measure clustering. When the outcome is binary, the ICC is known to be associated with the prevalence of the outcome. This association challenges its interpretation and can be problematic for sample size calculation. To overcome these situations, Crespi et al. extended a coefficient named R, initially proposed by Rosner for ophthalmologic data, to cluster randomized trials. Crespi et al. asserted that R may be less influenced by the outcome prevalence than is the ICC, although the authors provided only empirical data to support their assertion. They also asserted that “the traditional ICC approach to sample size determination tends to overpower studies under many scenarios, calling for more clusters than truly required”, although they did not consider empirical power. The aim of this study was to investigate whether R could indeed be considered independent of the outcome prevalence. We also considered whether sample size calculation should be better based on the R coefficient or the ICC. Considering the particular case of 2 individuals per cluster, we theoretically demonstrated that R is not symmetrical around the 0.5 prevalence value. This in itself demonstrates the dependence of R on prevalence. We also conducted a simulation study to explore the case of both fixed and variable cluster sizes greater than 2. This simulation study demonstrated that R decreases when prevalence increases from 0 to 1. Both the analytical and simulation results demonstrate that R depends on the outcome prevalence. In terms of sample size calculation, we showed that an approach based on the ICC is preferable to an approach based on the R coefficient because with the former, the empirical power is closer to the nominal one. Hence, the R coefficient does not outperform the ICC for binary outcomes because it does not offer any advantage over the ICC.


Sign in / Sign up

Export Citation Format

Share Document