scholarly journals Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elena A. Minina ◽  
Adrian N. Dauphinee ◽  
Florentine Ballhaus ◽  
Vladimir Gogvadze ◽  
Andrei P. Smertenko ◽  
...  

Abstract Background Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant “apoptosis-like programmed cell death” (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. Results Here, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40–55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40–55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents. Conclusions We conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.

1999 ◽  
Vol 277 (3) ◽  
pp. F428-F436 ◽  
Author(s):  
Dragana M. Filipovic ◽  
Xianmin Meng ◽  
W. Brian Reeves

Oxidant-induced cell injury has been implicated in the pathogenesis of several forms of acute renal failure. The present studies examined whether activation of poly(ADP-ribose)polymerase (PARP) by oxidant-induced DNA damage contributes to oxidant injury of renal epithelial cells. H2O2exposure resulted in an increase in PARP activity and decreases in cell ATP and NAD content. These changes were significantly inhibited by 10 mM 3-aminobenzamide (3-ABA), a PARP inhibitor. In contrast, H2O2-induced DNA damage was not prevented by 3-ABA. Exposure of LLC-PK1 cells to 1 mM H2O2for 2 h induced necrotic cell death as measured by increased lactate dehydrogenase (LDH) release. 3-ABA completely prevented the H2O2-induced LDH release. Live/dead fluorescent staining confirmed the protection by 3-ABA. These results are consistent with the view that oxidant-induced DNA damage activates PARP and that the subsequent ATP and NAD depletion contribute to necrotic cell death. Of note, although protected from necrosis, cells treated with H2O2and 3-ABA underwent apoptosis as evidenced by DNA fragmentation and bis-benzimide staining. In conclusion, activation of PARP contributes to oxidant-induced ATP depletion and necrosis in LLC-PK1 cells. However, PARP inhibition may target cells toward an apoptotic form of cell death.


2009 ◽  
Vol 151 (2) ◽  
pp. 289
Author(s):  
S. Shereef ◽  
H. Tagaram ◽  
D. Avella ◽  
E. Kimchi ◽  
K. Staveley-O'Carroll ◽  
...  

2009 ◽  
Vol 297 (3) ◽  
pp. F749-F759 ◽  
Author(s):  
Kishor Devalaraja-Narashimha ◽  
Alicia M. Diener ◽  
Babu J. Padanilam

Increased oxidative stress and intracellular calcium levels and mitochondrial overloading of calcium during ischemic renal injury (IRI) favor mitochondrial membrane permeability transition pore (MPTP) opening and subsequent necrotic cell death. Cyclophilin D (CypD) is an essential component of MPTP, and recent findings implicate its role in necrotic, but not apoptotic, cell death. To evaluate the role of CypD following IRI, we tested the hypothesis that CypD gene ablation protects mice from IRI. Renal function as assessed by plasma levels of both creatinine and blood urea nitrogen was significantly reduced in CypD knockout (CypD−/−) mice compared with wild-type mice during the 5-day post-ischemia period. Erythrocyte trapping, tubular cell necrosis, tubular dilatation, and neutrophil infiltration were significantly decreased in CypD−/− mice. To define the mechanisms by which CypD deficiency protect the kidneys, an in vitro model of IRI was employed. Inhibition of CypD using Cyclosporin A in oxidant-injured cultured proximal tubular cells (PTC) prevented mitochondrial membrane depolarization, reduced LDH release, ATP depletion and necrotic cell death. Similarly, oxidant-injured CypD−/− PTC primary cultures were protected from cytotoxicity and necrosis. To conclude, CypD gene ablation offers both functional and morphological protection in mice following IRI by decreasing necrotic cell death possibly via inhibition of MPTP and ATP depletion.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
CM Strüh ◽  
S Jäger ◽  
CM Schempp ◽  
T Jakob ◽  
A Scheffler ◽  
...  

2007 ◽  
Vol 26 (6) ◽  
pp. 769-771 ◽  
Author(s):  
Tom Vanden Berghe ◽  
Wim Declercq ◽  
Peter Vandenabeele

Sign in / Sign up

Export Citation Format

Share Document