scholarly journals Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qipeng Cheng ◽  
Yanchu Cheung ◽  
Chenyu Liu ◽  
Qingjie Xiao ◽  
Bo Sun ◽  
...  

Abstract Background Tigecycline is a tetracycline derivative that constitutes one of the last-resort antibiotics used clinically to treat infections caused by both multiple drug-resistant (MDR) Gram-negative and Gram-positive bacteria. Resistance to this drug is often caused by chromosome-encoding mechanisms including over-expression of efflux pumps and ribosome protection. However, a number of variants of the flavin adenine dinucleotide (FAD)-dependent monooxygenase TetX, such as Tet(X4), emerged in recent years as conferring resistance to tigecycline in strains of Enterobacteriaceae, Acinetobacter sp., Pseudomonas sp., and Empedobacter sp. To date, mechanistic details underlying the improvement of catalytic activities of new TetX enzymes are not available. Results In this study, we found that Tet(X4) exhibited higher affinity and catalytic efficiency toward tigecycline when compared to Tet(X2), resulting in the expression of phenotypic tigecycline resistance in E. coli strains bearing the tet(X4) gene. Comparison between the structures of Tet(X4) and Tet(X4)-tigecycline complex and those of Tet(X2) showed that they shared an identical FAD-binding site and that the FAD and tigecycline adopted similar conformation in the catalytic pocket. Although the amino acid changes in Tet(X4) are not pivotal residues for FAD binding and substrate recognition, such substitutions caused the refolding of several alpha helixes and beta sheets in the secondary structure of the substrate-binding domain of Tet(X4), resulting in the formation of a larger number of loops in the structure. These changes in turn render the substrate-binding domain of Tet(X4) more flexible and efficient in capturing substrate molecules, thereby improving catalytic efficiency. Conclusions Our works provide a better understanding of the molecular recognition of tigecycline by the TetX enzymes; these findings can help guide the rational design of the next-generation tetracycline antibiotics that can resist inactivation of the TetX variants.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jun Yang ◽  
Hanwen Zhu ◽  
Tianlong Zhang ◽  
Jianping Ding

AbstractD-2-hydroxyglutarate dehydrogenase (D-2-HGDH) catalyzes the oxidation of D-2-hydroxyglutarate (D-2-HG) into 2-oxoglutarate, and genetic D-2-HGDH deficiency leads to abnormal accumulation of D-2-HG which causes type I D-2-hydroxyglutaric aciduria and is associated with diffuse large B-cell lymphoma. This work reports the crystal structures of human D-2-HGDH in apo form and in complexes with D-2-HG, D-malate, D-lactate, L-2-HG, and 2-oxoglutarate, respectively. D-2-HGDH comprises a FAD-binding domain, a substrate-binding domain, and a small C-terminal domain. The active site is located at the interface of the FAD-binding domain and the substrate-binding domain. The functional roles of the key residues involved in the substrate binding and catalytic reaction and the mutations identified in D-2-HGDH-deficient diseases are analyzed by biochemical studies. The structural and biochemical data together reveal the molecular mechanism of the substrate specificity and catalytic reaction of D-2-HGDH and provide insights into the pathogenicity of the disease-associated mutations.


Author(s):  
Marija Iljina ◽  
Hisham Mazal ◽  
Pierre Goloubinoff ◽  
Inbal Riven ◽  
Gilad Haran

2003 ◽  
Vol 12 (2) ◽  
pp. 355-363 ◽  
Author(s):  
David A Wah ◽  
Igor Levchenko ◽  
Gabrielle E Rieckhof ◽  
Daniel N Bolon ◽  
Tania A Baker ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Federica Chiappori ◽  
Ivan Merelli ◽  
Luciano Milanesi ◽  
Giorgio Colombo ◽  
Giulia Morra

2000 ◽  
Vol 132 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Beate Rockel ◽  
Reinhard Guckenberger ◽  
Heinz Gross ◽  
Peter Tittmann ◽  
Wolfgang Baumeister

2019 ◽  
Vol 124 ◽  
pp. 111-120 ◽  
Author(s):  
Ana O. Tiroli-Cepeda ◽  
Thiago V. Seraphim ◽  
Glaucia M.S. Pinheiro ◽  
Denio E.P. Souto ◽  
Lauro T. Kubota ◽  
...  

2014 ◽  
Vol 49 (12) ◽  
pp. 2101-2106 ◽  
Author(s):  
Young-A Lee ◽  
Eun-Yeong Jeon ◽  
Sun-Mee Lee ◽  
Uwe T. Bornscheuer ◽  
Jin-Byung Park

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1882
Author(s):  
Wei Xia ◽  
Yingguo Bai ◽  
Pengjun Shi

Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases.


2009 ◽  
Vol 19 (14) ◽  
pp. 3828-3831 ◽  
Author(s):  
Conor M. Haney ◽  
Corinne Schneider ◽  
Barbara Beck ◽  
Jeffrey L. Brodsky ◽  
Alexander Dömling

Sign in / Sign up

Export Citation Format

Share Document