catalytic reaction
Recently Published Documents


TOTAL DOCUMENTS

1563
(FIVE YEARS 258)

H-INDEX

62
(FIVE YEARS 10)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 390
Author(s):  
Martyna Rzelewska-Piekut ◽  
Zuzanna Wiecka ◽  
Magdalena Regel-Rosocka

The paper presents basic studies on the precipitation of platinum, palladium, rhodium, and ruthenium nanoparticles from model acidic solutions using sodium borohydride, ascorbic acid, and sodium formate as reducing agents and polyvinylpyrrolidone as a stabilizing agent. The size of the obtained PGM particles after precipitation with NaBH4 solution does not exceed 55 nm. NaBH4 is an efficient reducer; the precipitation yields for Pt, Pd, Ru, Rh are 75, 90, 65 and 85%, respectively. By precipitation with ascorbic acid, it is possible to efficiently separate Pt, Rh, and Ru from Pd from the two-component mixtures. The obtained Pt, Pd, and Rh precipitates have the catalytic ability of the catalytic reaction of p-nitrophenol to p-aminophenol. The morphological characteristic of the PGM precipitates was analyzed by AFM, SEM-EDS, and TEM.


2022 ◽  
Author(s):  
Patrick Schwarz ◽  
Marta Tena-Solsona ◽  
Kun Dai ◽  
Job Boekhoven

Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack...


2022 ◽  
pp. 141-192
Author(s):  
Giovanni Palmisano ◽  
Samar Al Jitan ◽  
Corrado Garlisi

2021 ◽  
Author(s):  
John Simmie

This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. Only two of the isomers have been detected in emissions from the interstellar medium (ISM); possible further candidates are identifi�ed and the likelihood of their being detectable are considered. In general hardly any of these compounds have featured in the existing chemical literature so this work represents an important contribution extending the canon of chemical bonding which can contribute to machine-learning | providing a more exacting test of AI applications. The presence of acetamide, CH3C(O)NH2, is the subject of current debate with no clear and obvious paths to its formation; it is shown that a 1,3[H]-transfer from (E,Z ) ethanimidic acid, CH3C(OH){{NH, is feasible in spite of an energy barrier of 130 kJ/mol. It is speculated that the imidic acid can itself be formed from abundant precursors, H2O and CH3C{{{N, in an acid-induced, water addition, auto-catalytic reaction on water-ice grains.


2021 ◽  
Author(s):  
John Simmie

This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. Only two of the isomers have been detected in emissions from the interstellar medium (ISM); possible further candidates are identifi�ed and the likelihood of their being detectable are considered. In general hardly any of these compounds have featured in the existing chemical literature so this work represents an important contribution extending the canon of chemical bonding which can contribute to machine-learning | providing a more exacting test of AI applications. The presence of acetamide, CH3C(O)NH2, is the subject of current debate with no clear and obvious paths to its formation; it is shown that a 1,3[H]-transfer from (E,Z ) ethanimidic acid, CH3C(OH){{NH, is feasible in spite of an energy barrier of 130 kJ/mol. It is speculated that the imidic acid can itself be formed from abundant precursors, H2O and CH3C{{{N, in an acid-induced, water addition, auto-catalytic reaction on water-ice grains.


Sign in / Sign up

Export Citation Format

Share Document