scholarly journals A linear-time algorithm that avoids inverses and computes Jackknife (leave-one-out) products like convolutions or other operators in commutative semigroups

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
John L. Spouge ◽  
Joseph M. Ziegelbauer ◽  
Mileidy Gonzalez

Abstract Background Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statistical question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic problem. Given $$n$$ n elements $$g_{0} ,g_{1} , \ldots ,g_{n - 1}$$ g 0 , g 1 , … , g n - 1 in a set $$G$$ G with the closure and associative properties and a commutative product without inverses, compute the jackknife (leave-one-out) products $$\bar{g}_{j} = g_{0} g_{1} \cdots g_{j - 1} g_{j + 1} \cdots g_{n - 1}$$ g ¯ j = g 0 g 1 ⋯ g j - 1 g j + 1 ⋯ g n - 1 ($$0 \le j < n$$ 0 ≤ j < n ). Results This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment tree for computing segment products like $$g_{{\left[ {i,j} \right)}} = g_{i} g_{i + 1} \cdots g_{j - 1}$$ g i , j = g i g i + 1 ⋯ g j - 1 ; its novel downward phase mirrors the upward phase while exploiting the symmetry of $$g_{j}$$ g j and its complement $$\bar{g}_{j}$$ g ¯ j . The algorithm requires storage for $$2n$$ 2 n elements of $$G$$ G and only about $$3n$$ 3 n products. In contrast, the standard segment tree algorithms require about $$n$$ n products for construction and $$\log_{2} n$$ log 2 n products for calculating each $$\bar{g}_{j}$$ g ¯ j , i.e., about $$n\log_{2} n$$ n log 2 n products in total; and a naïve quadratic algorithm using $$n - 2$$ n - 2 element-by-element products to compute each $$\bar{g}_{j}$$ g ¯ j requires $$n\left( {n - 2} \right)$$ n n - 2 products. Conclusions In the herpesvirus application, the Jackknife Product algorithm required 15 min; standard segment tree algorithms would have taken an estimated 3 h; and the quadratic algorithm, an estimated 1 month. The Jackknife Product algorithm has many possible uses in bioinformatics and statistics.

2020 ◽  
Author(s):  
John Spouge ◽  
Joseph M. Ziegelbauer ◽  
Mileidy Gonzalez

Abstract [Please see the manuscript file pdf to view the full abstract.]Background: Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statistical question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic problem. Given elements in a set with the closure and associative properties and a commutative product without inverses, compute the jackknife (leave-one-out) products ( ).Results: This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment tree for computing segment products like ; its novel downward phase mirrors the upward phase while exploiting the symmetry of and its complement . The algorithm requires storage for elements of and only about products. In contrast, the standard segment tree algorithms require about products for construction and products for calculating each , i.e., about products in total; and a naïve quadratic algorithm using element-by-element products to compute each requires products.Conclusions: In the herpesvirus application, the Jackknife Product algorithm required 15 minutes; standard segment tree algorithms would have taken an estimated 3 hours; and the quadratic algorithm, an estimated 1 month. The Jackknife Product algorithm has many possible uses in bioinformatics and statistics.


2020 ◽  
Author(s):  
John Spouge ◽  
Joseph M. Ziegelbauer ◽  
Mileidy Gonzalez

Abstract Background: Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statistical question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic problem. Given n elements g0,g1,...gn-1 in a set with the closure and associative properties and a commutative product without inverses, compute the jackknife (leave-one-out) products gbar;=g0,g1,...gj-1 g j+1...gn-1 (0&le;j<n).Results: This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment tree for computing segment products like g[i,j)=gigi+1...gj-1; its novel downward phase mirrors the upward phase while exploiting the symmetry of and its complement gbar;j. The algorithm requires storage for elements of and only about products. In contrast, the standard segment tree algorithms require about n products for construction and log2 n products for calculating each gbar;j, i.e., about products n log n in total; and a naïve quadratic algorithm using n-2 element-by-element products to compute each gbar;j requires n (n-2) products.Conclusions: In the herpesvirus application, the Jackknife Product algorithm required 15 minutes; standard segment tree algorithms would have taken an estimated 3 hours; and the quadratic algorithm, an estimated 1 month. The Jackknife Product algorithm has many possible uses in bioinformatics and statistics.


2020 ◽  
Author(s):  
John Spouge ◽  
Joseph M. Ziegelbauer ◽  
Mileidy Gonzalez

Abstract Background: Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statistical question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic problem. Given elements in a set with the closure and associative properties and a commutative product without inverses, compute the jackknife (leave-one-out) products ( ).Results: This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment tree for computing segment products like ; its novel downward phase mirrors the upward phase while exploiting the symmetry of and its complement . The algorithm requires storage for elements of and only about products. In contrast, the standard segment tree algorithms require about products for construction and products for calculating each , i.e., about products in total; and a naïve quadratic algorithm using element-by-element products to compute each requires products.Conclusions: In the herpesvirus application, the Jackknife Product algorithm required 15 minutes; standard segment tree algorithms would have taken an estimated 3 hours; and the quadratic algorithm, an estimated 1 month. The Jackknife Product algorithm has many possible uses in bioinformatics and statistics.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


Sign in / Sign up

Export Citation Format

Share Document