scholarly journals Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Eleni Christodoulou-Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by μCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by μCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.

2020 ◽  
Author(s):  
Eleni Christodoulou-Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

AbstractBackgroundThe transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model.MethodsTgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis.ResultsTgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice.ConclusionsThe TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall faithfully reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


2020 ◽  
Author(s):  
Eleni Christodoulou -Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model. Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall faithfully reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


2020 ◽  
Author(s):  
Eleni Christodoulou -Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model.Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall faithfully reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


2020 ◽  
Author(s):  
Eleni Christodoulou -Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract BackgroundThe transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model.MethodsTgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis.ResultsTgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice.ConclusionsThe TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


2019 ◽  
Vol 3 (s1) ◽  
pp. 24-24
Author(s):  
Rubens Sautchuk ◽  
Brianna H. Shares ◽  
Roman A. Eliseev

OBJECTIVES/SPECIFIC AIMS: The study aims to further investigate how cyclophilin D (CypD), the key mPTP opening regulator, affects BMSCs fate and to determine potential regulatory mechanisms involved in CypD regulation during osteogenesis. METHODS/STUDY POPULATION: We evaluated CypD mRNA expression in mouse BMSCs and in osteogenic-like (OL) cells during the course of OB differentiation. CypD protein level was also probed. Moreover, BMSCs had their mPTP activity recorded during osteoinduction. We further analyzed the effect of CypD genetic deletion on osteogenesis in vitro and in vivo. For our in vivo model, we performed the ectopic bone formation assay to asses differences in ossicle formation when CypD KO BMSCs were transplanted compared to wild type littermate BMSCs. In our in vitro model, we transfected OL cells with either CypD gain of function or CypD loss of function vector and measured their osteogenic differentiation potential. Additionally, we treated BMSCs with CypD inhibitor and compare to non-treated BMSCs for mineralization level. To determine potential regulatory mechanisms involved in CypD regulation, we analyzed the CypD gene (Ppif) promoter for potential transcription factor (TF) binding sites and found multiple Smad-binding elements within this promoter. Smads (Smad1, 5, 8) are TFs downstream from Bone Morphogenic Protein (BMP) signaling pathway that transmit cell differentiation signaling, and exert either activating or inhibitory effects on a variety of genes. We also transfect OL cells with Smad1 vector and analyzed for CypD mRNA levels. RESULTS/ANTICIPATED RESULTS: - Our data showed that CypD mRNA levels decreased in both primary cells and OL cells at day 7 and day 14 in osteogenic media. - Osteogenic induction also decreased mPTP activity. - In vivo ectopic bone formation assay showed increased ossicle fo DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggest that downregulation of CypD increases OB differentiation due to improved OxPhos activity led by mPTP closure. Our results corroborate reports of CypD downregulation and mPTP closure during neuronal differentiation in developing rat brains as well as in cardiomyocyte differentiation in developing mouse hearts. Our studies also suggest a yet unknown mechanism linking differentiation signaling with mitochondrial function – BMP/Smad mediated downregulation of CypD transcription. As initially mentioned, in a previous study, our lab showed that CypD KO mice present higher mitochondrial function and osteogenicity in aged BMSCs and less osteoporosis burden. Taken together, these results suggest that CypD can be a potential target to prevent bone loss in aging.


2017 ◽  
Vol 41 (5) ◽  
pp. 1725-1735 ◽  
Author(s):  
Feilong Wang ◽  
Ying Jiang ◽  
Xia Huang ◽  
Qiao Liu ◽  
Yan Zhang ◽  
...  

Background/Aims: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs). Methods: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. Results: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. Conclusion: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.


2016 ◽  
Vol 9 (6) ◽  
pp. 755-756 ◽  
Author(s):  
Sytse F. Oudkerk ◽  
Pim A. de Jong ◽  
Björn A. Blomberg ◽  
Asbjørn M. Scholtens ◽  
Willem P.Th.M. Mali ◽  
...  

1992 ◽  
Vol 267 (20) ◽  
pp. 14233-14237
Author(s):  
Y Ogawa ◽  
D.K. Schmidt ◽  
R.M. Nathan ◽  
R.M. Armstrong ◽  
K.L. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document