scholarly journals Principal components of tau positron emission tomography and longitudinal tau accumulation in Alzheimer’s disease

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanna Cho ◽  
Min Seok Baek ◽  
Hye Sun Lee ◽  
Jae Hoon Lee ◽  
Young Hoon Ryu ◽  
...  

Abstract Background We aimed to investigate the clinical correlates of principal components (PCs) of tau positron emission tomography (PET) and their predictability for longitudinal changes in tau accumulation in Alzheimer’s disease (AD). Methods We enrolled 272 participants who underwent two PET scans [18F-flortaucipir for tau and 18F-florbetaben for amyloid-β (Aβ)], brain magnetic resonance imaging, and neuropsychological tests as baseline assessments. Among them, 187 participants underwent the same follow-up assessments after an average of 2 years. Using Aβ-positive AD dementia-specific PCs obtained from the baseline scans of 56 Aβ-positive patients with AD dementia, we determined the expression of the first two PCs (PC1 and PC2) in all participants. We assessed the correlation of PC expression with baseline clinical characteristics and tau accumulation rates. Moreover, we investigated the predictability of PCs for the longitudinal tau accumulation in training and test sets. Results PC1 corresponded to the tau distribution pattern in AD, while the two PC2 extremes reflected the parietal or temporal predominance of tau distribution. PC1 expression increased with tau burden and decreased with cognitive impairment, while PC2 expression decreased with advanced age and visuospatial and attention function deterioration. The tau accumulation rate was positively correlated with PC1 expression (greater tau burden) and negatively correlated with PC2 expression (temporal predominance). A regression model using both PCs could predict longitudinal changes in the tau burden (intraclass correlation coefficient = 0.775, R2 = 0.456 in test set). Conclusions PC analysis of tau PET could be useful for evaluating disease progression, characterizing the tau distribution pattern, and predicting longitudinal tau accumulation.

2021 ◽  
Vol 39 (3) ◽  
pp. 214-218
Author(s):  
Min Hye Kim ◽  
Joonho Lee ◽  
Hong Nam Kim ◽  
In Ja Shin ◽  
Keun Lee ◽  
...  

We report a 61-year-old woman with clinical course for Alzheimer’s disease (AD) dementia and discordant amyloid-β positron-emission tomography (PET) and cerebrospinal fluid biomarkers. Brain magnetic resonance imaging revealed remarkable atrophy in the hippocampus. However, repeated delayed <sup>18</sup>F-flutemetamol brain amyloid PET images with 1 year-interval revealed no amyloid deposition, whereas her CSF revealed low Aβ42, high total tau and p-tau181. This discordant amyloid-β PET and CSF biomarkers in this early-onset AD dementia might be associated with her low resilience or mixed pathology.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51958 ◽  
Author(s):  
Daniel McLean ◽  
Michael J. Cooke ◽  
Yuanfei Wang ◽  
David Green ◽  
Paul E. Fraser ◽  
...  

2021 ◽  
Author(s):  
Fumihiko Yasuno ◽  
Hiroyuki Minami

Abstract This study used positron emission tomography to examine whether the seasonal birth effect as an exogenic indicator of early life environmental factors influenced vulnerability to Alzheimer’s disease (AD) pathology in the elderly. We analyzed datasets from the Alzheimer’s Disease Neuroimaging Initiative, which included the data for 234 cognitively normal individuals and patients with mild cognitive impairment (n = 115) and AD dementia (n = 38). As an index of amyloid β (Aβ)/tau accumulation, the AV-45/AV-1451-standardized uptake value ratios (SUVRs) were compared between groups of spring-to-summer births and fall-to-winter births by analysis of covariance. Seasonal birth difference was a good predictor of AV-1451 SUVR. We found that participants with a fall-to-winter birth showed lower AV-1451 SUVRs than those with a spring-to-summer birth, after accounting for the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS) score and other factors that could possibly affect tau accumulation. Our findings showed a vulnerability to tau pathology in participants with a fall-to-winter birth, which may be caused by perinatal or postnatal brain damage due to the risk factors associated with the cold season.


2022 ◽  
Vol 13 ◽  
Author(s):  
Ruiqing Ni ◽  
Roger M. Nitsch

An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer’s disease and Parkinson’s disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer’s disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson’s disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.


2021 ◽  
Vol 13 (577) ◽  
pp. eabc0655
Author(s):  
Justin S. Sanchez ◽  
J. Alex Becker ◽  
Heidi I. L. Jacobs ◽  
Bernard J. Hanseeuw ◽  
Shu Jiang ◽  
...  

Advances in molecular positron emission tomography (PET) have enabled anatomic tracking of brain pathology in longitudinal studies of normal aging and dementia, including assessment of the central model of Alzheimer’s disease (AD) pathogenesis, according to which TAU pathology begins focally but expands catastrophically under the influence of amyloid-β (Aβ) pathology to mediate neurodegeneration and cognitive decline. Initial TAU deposition occurs many years before Aβ in a specific area of the medial temporal lobe. Building on recent work that enabled focus of molecular PET measurements on specific TAU-vulnerable convolutional temporal lobe anatomy, we applied an automated anatomic sampling method to quantify TAU PET signal in 443 adult participants from several observational studies of aging and AD, spanning a wide range of ages, Aβ burdens, and degrees of clinical impairment. We detected initial cortical emergence of tauopathy near the rhinal sulcus in clinically normal people and, in a subset with longitudinal 2-year follow-up data (n = 104), tracked Aβ-associated spread of TAU from this site first to nearby neocortex of the temporal lobe and then to extratemporal regions. Greater rate of TAU spread was associated with baseline measures of both global Aβ burden and medial temporal lobe TAU. These findings are consistent with clinicopathological correlation studies of Alzheimer’s tauopathy and enable precise tracking of AD-related TAU progression for natural history studies and prevention therapeutic trials.


Sign in / Sign up

Export Citation Format

Share Document