scholarly journals Process data of allogeneic ex vivo-expanded ABCB5+ mesenchymal stromal cells for human use: off-the-shelf GMP-manufactured donor-independent ATMP

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes. Methods We have developed a validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium, and immunomagnetic isolation of the ABCB5+ cells from the mixed culture. Results Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches, and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product. Conclusion We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure, and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.

2020 ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background: Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes.Methods: We developed and validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium and immunomagnetic isolation of the ABCB5+ cells from the mixed culture.Results: Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product.Conclusion: We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


2020 ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background: Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes.Methods: We have developed a validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium and immunomagnetic isolation of the ABCB5+ cells from the mixed culture.Results: Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product.Conclusion: We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1908
Author(s):  
Anna Labedz-Maslowska ◽  
Agnieszka Szkaradek ◽  
Tomasz Mierzwinski ◽  
Zbigniew Madeja ◽  
Ewa Zuba-Surma

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.


Author(s):  
Katia Mareschi ◽  
Sara Castiglia ◽  
Aloe Adamini ◽  
Deborah Rustichelli ◽  
Elena Marini ◽  
...  

For their clinical use Mesenchymal Stromal Cells (MSCs), isolated from bone marrow (BM-MSCs) are considered Advanced Therapy Medicinal Products (ATMP) and need to be produced according to Good Manufacturing Practice (GMP). Human platelet lysate (HPL) represents a good GMP-compliant alternative to animal serum and after pathogen inactivation with Psoralen was more efficient and safer to produce MSCs in GMP. In this study MSCs cultivated in FBS (FBS-MSC) or inactivated HPL (iHPL-MSC), were compared for their immunomodulant properties. In particular, the effects of MSCs on: 1)proliferation of total Lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate versus Th1 and Th2 Ly; 2) the immunophenotype of different T cell subsets; 3)the cytokine release to verify Th1, Th2 and Th17 polarization were analyzed by using in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulant properties observed in the FBS-MSCs co-cultures. Although, a more efficient effect on the increase of naïve T cells and, in the Th1 cytokine release related to iHPL was observed. This study confirms that iHPL, used as medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion to preserve their immunomodulant proprieties.


2014 ◽  
Vol 5 (1) ◽  
pp. 9 ◽  
Author(s):  
José Paulo Martins ◽  
Jorge Miguel Santos ◽  
Joana Marto de Almeida ◽  
Mariana Alves Filipe ◽  
Mariana Vargas Teixeira de Almeida ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Giuseppe Astori ◽  
Martina Bernardi ◽  
Angela Bozza ◽  
Daniela Catanzaro ◽  
Katia Chieregato ◽  
...  

Abstract Background During the coronavirus disease-2019 (COVID-19) pandemic, Italian hospitals faced the most daunting challenges of their recent history, and only essential therapeutic interventions were feasible. From March to April 2020, the Laboratory of Advanced Cellular Therapies (Vicenza, Italy) received requests to treat a patient with severe COVID-19 and a patient with acute graft-versus-host disease with umbilical cord-derived mesenchymal stromal cells (UC-MSCs). Access to clinics was restricted due to the risk of contagion. Transport of UC-MSCs in liquid nitrogen was unmanageable, leaving shipment in dry ice as the only option. Methods We assessed effects of the transition from liquid nitrogen to dry ice on cell viability; apoptosis; phenotype; proliferation; immunomodulation; and clonogenesis; and validated dry ice-based transport of UC-MSCs to clinics. Results Our results showed no differences in cell functionality related to the two storage conditions, and demonstrated the preservation of immunomodulatory and clonogenic potentials in dry ice. UC-MSCs were successfully delivered to points-of-care, enabling favourable clinical outcomes. Conclusions This experience underscores the flexibility of a public cell factory in its adaptation of the logistics of an advanced therapy medicinal product during a public health crisis. Alternative supply chains should be evaluated for other cell products to guarantee delivery during catastrophes.


2020 ◽  
Author(s):  
Giuseppe Astori ◽  
Martina Bernardi ◽  
Angela Bozza ◽  
Daniela Catanzaro ◽  
Katia Chieregato ◽  
...  

Abstract Background: During the coronavirus disease-2019 (COVID-19) pandemic, Italian hospitals faced the most daunting challenges of their recent history, and only essential therapeutic interventions were feasible. From March to April 2020, the Laboratory of Advanced Cellular Therapies (Vicenza, Italy) received requests to treat a patient with severe COVID-19 and a patient with acute graft-versus-host disease with umbilical cord-derived mesenchymal stromal cells (UC-MSCs). Access to clinics was restricted due to the risk of contagion. Transport of UC-MSCs in liquid nitrogen was unmanageable, leaving shipment in dry ice as the only option. Methods: We assessed effects of the transition from liquid nitrogen to dry ice on cell viability; apoptosis; phenotype; proliferation; immunomodulation; and clonogenesis; and validated dry ice-based transport of UC-MSCs to clinics. Results: Our results showed no differences in cell functionality related to the two storage conditions, and demonstrated the preservation of immunomodulatory and clonogenic potentials in dry ice. UC-MSCs were successfully delivered to points-of-care, enabling favourable clinical outcomes.Conclusions: This experience underscores the flexibility of a public cell factory in its adaptation of the logistics of an advanced therapy medicinal product during a public health crisis. Alternative supply chains should be evaluated for other cell products to guarantee delivery during catastrophes.


Sign in / Sign up

Export Citation Format

Share Document