Silk-based hybrid microfibrous mats as guided bone regeneration membranes

Author(s):  
Mi Wu ◽  
Zhengyi Han ◽  
Wen Liu ◽  
Jinrong Yao ◽  
Bingjiao Zhao ◽  
...  

LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


Cell Reports ◽  
2013 ◽  
Vol 5 (3) ◽  
pp. 601-610 ◽  
Author(s):  
Delphine Freida ◽  
Severine Lecourt ◽  
Audrey Cras ◽  
Valérie Vanneaux ◽  
Gaelle Letort ◽  
...  

2008 ◽  
Vol 373-374 ◽  
pp. 722-725 ◽  
Author(s):  
Ke Dong Song ◽  
Peng Fei Wen ◽  
Tian Qing Liu

Initial attachment and spreading of the inoculated cells determines the long-time viability of cells onto biomedical scaffolds designed for various orthopedic or other clinical applications. The aim of this study was to investigate the influence of biomimetic thin film coating surfaces of bio-derived bone scaffolds with collagen proteins and chitosan on bone marrow mesenchymal stem cells interactions in order to improve cell adhesion, spreading and proliferation. These two merits were used synthetically to generate apatite-based materials that can function as allograft bone grafts in humans. In this study, the thin film coatings were operated by means of soaked, pre-frozen, and freeze-dried step by step. All coatings were characterized using Raman spectra, inverted microscope, atomic force microscopy, and scanning electron microscopy. After that, the bio-derived bone scaffolds with or without thin film coatings were used in bone marrow mesenchymal stem cell culture experiments to study cell adhesion, spreading, viability, proliferation and morphology. Then, the biological morphologies of the fabricated cell-scaffold constructs were detected by scanning electron microscope (SEM). The cell reactions were investigated concerning cell adhesion, migration, spreading, and proliferation under inverted microscope and fluorescence microscopy. The results showed that the bio-derived bone scaffold treated with thin film coatings by using rat-tail type I collagen and chitosan improved the adhesion and spreading of mesenchymal stem cells in comparison to the untreated one. Besides, cell viability and morphology were not affected by the presence of either type of thin film coating. Still, the results assay revealed an increased proliferation of bone marrow mesenchymal stem cells on both types of thin film coatings compared to coating with non-coated controls.


2009 ◽  
Vol 73 (10) ◽  
pp. 2226-2233 ◽  
Author(s):  
Shi-Wu DONG ◽  
Da-Jun YING ◽  
Xiao-Jun DUAN ◽  
Zhao XIE ◽  
Zi-Jiang YU ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 840
Author(s):  
Francesca Salamanna ◽  
Nicolandrea Del Piccolo ◽  
Maria Sartori ◽  
Gianluca Giavaresi ◽  
Lucia Martini ◽  
...  

Bone regeneration remains one of the major clinical needs in orthopedics, and advanced and alternative strategies involving bone substitutes, cells, and growth factors (GFs) are mandatory. The purpose of this study was to evaluate whether the association of autologous bone marrow mesenchymal stem cells (BMSC), isolated by ‘one-step surgical procedure’, and activated platelet rich plasma (PRP) improves osseointegration and bone formation of a hydroxyapatite-coated titanium (Ti-HA) implant, already in clinical use, in a rabbit cancellous defect. The GFs present in plasma, in inactivated and activated PRP were also tested. At 2 weeks, histology and histomorphometry highlighted increased bone-to-implant contact (BIC) in Ti-HA combined with BMSC and PRP in comparison to Ti-HA alone and Ti-HA + PRP. The combined effect of BMSC and PRP peaked at 4 weeks where the BIC value was higher than all other treatments. At both experimental times, newly formed bone (Trabecular Bone Volume, BV/TV) in all tested treatments showed increased values in comparison to Ti-HA alone. At 4 weeks Ti-HA + PRP + BMSC showed the highest BV/TV and the highest osteoblasts number; additionally, a higher osteoid surface and bone formation rate were found in Ti-HA + BMSC + PRP than in all other treatments. Finally, the analyses of GFs revealed higher values in the activated PRP in comparison to plasma and to non-activated PRP. The study suggests that the combination of autologous activated PRP, as a carrier for BMSCs, is a promising regenerative strategy for bone formation, osseointegration, and mineralization of bone implants.


2009 ◽  
Vol 33 (11) ◽  
pp. 1127-1134 ◽  
Author(s):  
Xi-Ying Luan ◽  
Guan-Hua Huo ◽  
Ming-Zhong Li ◽  
Shen-Zhou Lu ◽  
Xue-Guang Zhang

Sign in / Sign up

Export Citation Format

Share Document