scholarly journals MERMAID: an open source automated hit-to-lead method based on deep reinforcement learning

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Daiki Erikawa ◽  
Nobuaki Yasuo ◽  
Masakazu Sekijima

AbstractThe hit-to-lead process makes the physicochemical properties of the hit molecules that show the desired type of activity obtained in the screening assay more drug-like. Deep learning-based molecular generative models are expected to contribute to the hit-to-lead process. The simplified molecular input line entry system (SMILES), which is a string of alphanumeric characters representing the chemical structure of a molecule, is one of the most commonly used representations of molecules, and molecular generative models based on SMILES have achieved significant success. However, in contrast to molecular graphs, during the process of generation, SMILES are not considered as valid SMILES. Further, it is quite difficult to generate molecules starting from a certain molecule, thus making it difficult to apply SMILES to the hit-to-lead process. In this study, we have developed a SMILES-based generative model that can be generated starting from a certain molecule. This method generates partial SMILES and inserts it into the original SMILES using Monte Carlo Tree Search and a Recurrent Neural Network. We validated our method using a molecule dataset obtained from the ZINC database and successfully generated molecules that were both well optimized for the objectives of the quantitative estimate of drug-likeness (QED) and penalized octanol-water partition coefficient (PLogP) optimization. The source code is available at https://github.com/sekijima-lab/mermaid.

2021 ◽  
Author(s):  
Daiki Erikawa ◽  
Nobuaki Yasuo ◽  
Masakazu Sekijima

<div>The hit-to-lead process makes the physicochemical properties of the hit compounds that show the desired type of activity obtained in the screening assay more drug-like. Deep learning-based molecular generative models are expected to contribute to the hit-to-lead process.</div><div>The simplified molecular input line entry system (SMILES), which is a string of alphanumeric characters representing the chemical structure of a molecule, is one of the most commonly used representations of molecules, and molecular generative models based on SMILES have achieved significant success. However, in contrast to molecular graphs, during the process of generation, SMILES are not considered as valid SMILES. Further, it is quite difficult to generate molecules starting from a certain molecule, thus making it difficult to apply SMILES to the hit-to-lead process.In this study, we have developed a SMILES-based generative model that can be generated starting from a certain compound. This method generates partial SMILES and inserts it into the original SMILES using Monte Carlo Tree Search and a Recurrent Neural Network.We validated our method using a molecule dataset obtained from the ZINC database and successfully generated molecules that were both well optimized for the objectives of the quantitative estimate of drug-likeness (QED) and penalized octanol-water partition coefficient (PLogP) optimization.</div><div>The source code is available at https: //github.com/sekijima-lab/mermaid.</div>


2021 ◽  
Author(s):  
Daiki Erikawa ◽  
Nobuaki Yasuo ◽  
Masakazu Sekijima

<div>The hit-to-lead process makes the physicochemical properties of the hit compounds that show the desired type of activity obtained in the screening assay more drug-like. Deep learning-based molecular generative models are expected to contribute to the hit-to-lead process.</div><div>The simplified molecular input line entry system (SMILES), which is a string of alphanumeric characters representing the chemical structure of a molecule, is one of the most commonly used representations of molecules, and molecular generative models based on SMILES have achieved significant success. However, in contrast to molecular graphs, during the process of generation, SMILES are not considered as valid SMILES. Further, it is quite difficult to generate molecules starting from a certain molecule, thus making it difficult to apply SMILES to the hit-to-lead process.In this study, we have developed a SMILES-based generative model that can be generated starting from a certain compound. This method generates partial SMILES and inserts it into the original SMILES using Monte Carlo Tree Search and a Recurrent Neural Network.We validated our method using a molecule dataset obtained from the ZINC database and successfully generated molecules that were both well optimized for the objectives of the quantitative estimate of drug-likeness (QED) and penalized octanol-water partition coefficient (PLogP) optimization.</div><div>The source code is available at https: //github.com/sekijima-lab/mermaid.</div>


2018 ◽  
Author(s):  
Jan H. Jensen

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimisation of logP values with a constraint for synthetic accessibility and shows that GA is as good or better than the ML approaches for this particular property. The molecules found by GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater. 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, while the GB-GM-based method is orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to more traditional, and often simpler, approaches such a GA.


2019 ◽  
Author(s):  
Jan H. Jensen

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimisation of logP values with a constraint for synthetic accessibility and shows that GA is as good or better than the ML approaches for this particular property. The molecules found by GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater. 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, while the GB-GM-based method is orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to more traditional, and often simpler, approaches such a GA.


2019 ◽  
Author(s):  
Jan H. Jensen

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimisation of logP values with a constraint for synthetic accessibility and shows that GA is as good or better than the ML approaches for this particular property. The molecules found by GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater. 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, while the GB-GM-based method is orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to more traditional, and often simpler, approaches such a GA.


2009 ◽  
Vol 7 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Andrey Toropov ◽  
Alla Toropova ◽  
Emilio Benfenati

AbstractUsually, QSPR is not used to model organometallic compounds. We have modeled the octanol/water partition coefficient for organometallic compounds of Na, K, Ca, Cu, Fe, Zn, Ni, As, and Hg by optimal descriptors calculated with simplified molecular input line entry system (SMILES) notations. The best model is characterized by the following statistics: n=54, r2=0.9807, s=0.677, F=2636 (training set); n=26, r2=0.9693, s=0.969, F=759 (test set). Empirical criteria for the definition of the applicability domain for these models are discussed.


Sign in / Sign up

Export Citation Format

Share Document