scholarly journals Retinal vessel segmentation with constrained-based nonnegative matrix factorization and 3D modified attention U-Net

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yang Yu ◽  
Hongqing Zhu

AbstractDue to the complex morphology and characteristic of retinal vessels, it remains challenging for most of the existing algorithms to accurately detect them. This paper proposes a supervised retinal vessels extraction scheme using constrained-based nonnegative matrix factorization (NMF) and three dimensional (3D) modified attention U-Net architecture. The proposed method detects the retinal vessels by three major steps. First, we perform Gaussian filter and gamma correction on the green channel of retinal images to suppress background noise and adjust the contrast of images. Then, the study develops a new within-class and between-class constrained NMF algorithm to extract neighborhood feature information of every pixel and reduce feature data dimension. By using these constraints, the method can effectively gather similar features within-class and discriminate features between-class to improve feature description ability for each pixel. Next, this study formulates segmentation task as a classification problem and solves it with a more contributing 3D modified attention U-Net as a two-label classifier for reducing computational cost. This proposed network contains an upsampling to raise image resolution before encoding and revert image to its original size with a downsampling after three max-pooling layers. Besides, the attention gate (AG) set in these layers contributes to more accurate segmentation by maintaining details while suppressing noises. Finally, the experimental results on three publicly available datasets DRIVE, STARE, and HRF demonstrate better performance than most existing methods.

2020 ◽  
Author(s):  
Yang Yu ◽  
Hongqing Zhu

Abstract Due to the complex morphology and characteristic of retinal vessels, it remains challenging for most of the existing algorithms to accurately detect them. This paper proposes a supervised retinal vessels extraction scheme using constrained-based Nonnegative Matrix Factorization (NMF) and 3D modified Attention U-Net architecture. The proposed method detects the retinal vessels by three major steps. First, we perform Gaussian filter and Gamma correction on the Green channel of retinal images to suppress background noise and adjust the contrast of images. Then, the study develops a new within-class and between-class constrained NMF algorithms to extract neighborhood feature information of every pixel and reduce feature data dimension. By using these constraints, the method can effectively gather similar features within-class and discriminate features between-class to improve feature description ability for each pixel. Next, this study formulates segmentation task as a classification problem and solves it with a more contributing 3D modified Attention U-Net as a two-labels classifier for reducing computational cost. This proposed network contains an up-sampling to raise image resolution before encoding and revert image to its original size with a down-sampling after three max-pooling layers. Besides, the Attention Gate (AG) set in these layers contributes to more accurate segmentation by maintaining details while suppressing noises. Finally, the experimental results on two publicly available datasets STARE and DRIVE demonstrate better performance than most existing methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Li Sun ◽  
Congying Han ◽  
Ziwen Liu

Hyperspectral unmixing is a powerful method of the remote sensing image mining that identifies the constituent materials and estimates the corresponding fractions from the mixture. We consider the application of nonnegative matrix factorization (NMF) for the mining and analysis of spectral data. In this paper, we develop two effective active set type NMF algorithms for hyperspectral unmixing. Because the factor matrices used in unmixing have sparse features, the active set strategy helps reduce the computational cost. These active set type algorithms for NMF is based on an alternating nonnegative constrained least squares (ANLS) and achieve a quadratic convergence rate under the reasonable assumptions. Finally, numerical tests demonstrate that these algorithms work well and that the function values decrease faster than those obtained with other algorithms.


2008 ◽  
Vol 2008 ◽  
pp. 1-17 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Binbin Pan ◽  
Bin Fang ◽  
Ming Li ◽  
Jianliang Tang

Nonnegative matrix factorization (NMF) is a promising approach for local feature extraction in face recognition tasks. However, there are two major drawbacks in almost all existing NMF-based methods. One shortcoming is that the computational cost is expensive for large matrix decomposition. The other is that it must conduct repetitive learning, when the training samples or classes are updated. To overcome these two limitations, this paper proposes a novel incremental nonnegative matrix factorization (INMF) for face representation and recognition. The proposed INMF approach is based on a novel constraint criterion and our previous block strategy. It thus has some good properties, such as low computational complexity, sparse coefficient matrix. Also, the coefficient column vectors between different classes are orthogonal. In particular, it can be applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases, are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods, our INMF approach gives the best performance.


2012 ◽  
Vol 24 (4) ◽  
pp. 1085-1105 ◽  
Author(s):  
Nicolas Gillis ◽  
François Glineur

Nonnegative matrix factorization (NMF) is a data analysis technique used in a great variety of applications such as text mining, image processing, hyperspectral data analysis, computational biology, and clustering. In this letter, we consider two well-known algorithms designed to solve NMF problems: the multiplicative updates of Lee and Seung and the hierarchical alternating least squares of Cichocki et al. We propose a simple way to significantly accelerate these schemes, based on a careful analysis of the computational cost needed at each iteration, while preserving their convergence properties. This acceleration technique can also be applied to other algorithms, which we illustrate on the projected gradient method of Lin. The efficiency of the accelerated algorithms is empirically demonstrated on image and text data sets and compares favorably with a state-of-the-art alternating nonnegative least squares algorithm.


Sign in / Sign up

Export Citation Format

Share Document