scholarly journals The error analysis of Crank-Nicolson-type difference scheme for fractional subdiffusion equation with spatially variable coefficient

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Pu Zhang ◽  
Hai Pu
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Wei Gu

A difference scheme is constructed for a type of variable coefficient time fractional subdiffusion equation with multidelay. Stability and convergence results of the scheme are obtained, and theoretical results are proved by two numerical tests.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gu ◽  
Peng Wang

A linearized Crank-Nicolson difference scheme is constructed to solve a type of variable coefficient delay partial differential equations. The difference scheme is proved to be unconditionally stable and convergent, where the convergence order is two in both space and time. A numerical test is provided to illustrate the theoretical results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiaozhong Yang ◽  
Xu Dang

Abstract The fractional reaction–diffusion equation has profound physical and engineering background, and its rapid solution research is of important scientific significance and engineering application value. In this paper, we propose a parallel computing method of mixed difference scheme for time fractional reaction–diffusion equation and construct a class of improved alternating segment Crank–Nicolson (IASC–N) difference schemes. The class of parallel difference schemes constructed in this paper, based on the classical Crank–Nicolson (C–N) scheme and classical explicit and implicit schemes, combines with alternating segment techniques. We illustrate the unique existence, unconditional stability, and convergence of the parallel difference scheme solution theoretically. Numerical experiments verify the theoretical analysis, which shows that the IASC–N scheme has second order spatial accuracy and $2-\alpha $ 2 − α order temporal accuracy, and the computational efficiency is greatly improved compared with the implicit scheme and C–N scheme. The IASC–N scheme has ideal computation accuracy and obvious parallel computing properties, showing that the IASC–N parallel difference method is effective for solving time fractional reaction–diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document