scholarly journals The implementation of the mortar spectral element discretization of the heat equation with discontinuous diffusion coefficient

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Mohamed Abdelwahed ◽  
Nejmeddine Chorfi
Author(s):  
Jérémi Dardé ◽  
Sylvain Ervedoza ◽  
Roberto Morales

In this article, we study the null-controllability of a heat equation in a domain composed of two media of different constant conductivities. In particular, we are interested in the behavior of the system when the conductivity of the medium on which the control does not act goes to infinity, corresponding at the limit to a perfectly conductive medium. In that case, and under suitable geometric conditions, we obtain a uniform null-controllability result. Our strategy is based on   the analysis of the controllability of the corresponding wave operators and the transmutation technique, which explains the geometric conditions.


2014 ◽  
Vol 22 (3) ◽  
pp. 13-36
Author(s):  
Nejmeddine Chorfi ◽  
Mohamed Abdelwahed ◽  
Ines Ben Omrane

AbstractIn this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler’s implicit scheme in time and spectral method in space. We propose two families of error indicators both of them are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones.


2020 ◽  
Vol 10 (1) ◽  
pp. 477-493
Author(s):  
Mohamed Abdelwahed ◽  
Nejmeddine Chorfi

Abstract The paper deals with a posteriori analysis of the spectral element discretization of a non linear heat equation. The discretization is based on Euler’s backward scheme in time and spectral discretization in space. Residual error indicators related to the discretization in time and in space are defined. We prove that those indicators are upper and lower bounded by the error estimation.


2020 ◽  
Vol 21 (01) ◽  
pp. 2150002
Author(s):  
Yuliya Mishura ◽  
Kostiantyn Ralchenko ◽  
Mounir Zili ◽  
Eya Zougar

We introduce a fractional stochastic heat equation with second-order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by an infinite-dimensional fractional Brownian motion. We characterize the fundamental solution of its deterministic part, and prove the existence and the uniqueness of its solution.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850093 ◽  
Author(s):  
Chaoxu Pei ◽  
Mark Sussman ◽  
M. Yousuff Hussaini

A space-time discontinuous Galerkin spectral element method is combined with two different approaches for treating problems with discontinuous solutions: (i) adding a space-time dependent artificial viscosity, and (ii) tracking the discontinuity with space-time spectral accuracy. A Picard iteration method is employed to solve nonlinear system of equations derived from the space-time DG spectral element discretization. Spectral accuracy in both space and time is demonstrated for the Burgers’ equation with a smooth solution. For tests with discontinuities, the present space-time method enables better accuracy at capturing the shock strength in the element containing shock when higher order polynomials in both space and time are used. The spectral accuracy of the shock speed and location is demonstrated for the solution of the inviscid Burgers’ equation obtained by the tracking method.


2018 ◽  
Vol 52 (5) ◽  
pp. 2065-2082 ◽  
Author(s):  
Erik Burman ◽  
Jonathan Ish-Horowicz ◽  
Lauri Oksanen

We consider a finite element discretization for the reconstruction of the final state of the heat equation, when the initial data is unknown, but additional data is given in a sub domain in the space time. For the discretization in space we consider standard continuous affine finite element approximation, and the time derivative is discretized using a backward differentiation. We regularize the discrete system by adding a penalty on the H2-semi-norm of the initial data, scaled with the mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen [Numer. Math. 139 (2018) 505–528], combining discrete stability of the numerical method with sharp Carleman estimates for the physical problem, to derive optimal error estimates for the approximate solution. For the natural space time energy norm, away from t = 0, the convergence is the same as for the classical problem with known initial data, but contrary to the classical case, we do not obtain faster convergence for the L2-norm at the final time.


Sign in / Sign up

Export Citation Format

Share Document