scholarly journals Fractional operators with generalized Mittag-Leffler k-function

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shahid Mubeen ◽  
Rana Safdar Ali

AbstractIn this paper, our main aim is to deal with two integral transforms involving the Gauss hypergeometric functions as their kernels. We prove some composition formulas for such generalized fractional integrals with Mittag-Leffler k-function. The results are established in terms of the generalized Wright hypergeometric function. The Euler integral k-transformation for Mittag-Leffler k-functions has also been developed.

2015 ◽  
Vol 08 (04) ◽  
pp. 1550082 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

Recently, Opps, Saad and Srivastava [Recursion formulas for Appell’s hypergeometric function [Formula: see text] with some applications to radiation field problems, Appl. Math. Comput. 207 (2009) 545–558] presented the recursion formulas for Appell’s function [Formula: see text] and also gave its applications to radiation field problems. Then Wang [Recursion formulas for Appell functions, Integral Transforms Spec. Funct. 23(6) (2012) 421–433] obtained the recursion formulas for Appell functions [Formula: see text] and [Formula: see text]. In our investigation here, we derive the recursion formulas for 14 three-variable Lauricella functions, three Srivastava’s triple hypergeometric functions and four [Formula: see text]-variable Lauricella functions.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
K. Jangid ◽  
R. K. Parmar ◽  
R. Agarwal ◽  
Sunil D. Purohit

Abstract Motivated by a recent study on certain families of the incomplete H-functions (Srivastava et al. in Russ. J. Math. Phys. 25(1):116–138, 2018), we aim to investigate and develop several interesting properties related to product of a more general polynomial class together with incomplete Fox–Wright hypergeometric functions ${}_{p}\Psi _{q}^{(\gamma )}(\mathfrak{t})$ Ψ q ( γ ) p ( t ) and ${}_{p}\Psi _{q}^{(\Gamma )}(\mathfrak{t})$ Ψ q ( Γ ) p ( t ) including Marichev–Saigo–Maeda (M–S–M) fractional integral and differential operators, which contain Saigo hypergeometric, Riemann–Liouville, and Erdélyi–Kober fractional operators as particular cases regarding different parameter selection. Furthermore, we derive several integral transforms such as Jacobi, Gegenbauer (or ultraspherical), Legendre, Laplace, Mellin, Hankel, and Euler’s beta transforms.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nabiullah Khan ◽  
Talha Usman ◽  
Mohd Aman ◽  
Shrideh Al-Omari ◽  
Serkan Araci

Abstract The aim of the paper is to derive certain formulas involving integral transforms and a family of generalized Wright functions, expressed in terms of the generalized Wright hypergeometric function and in terms of the generalized hypergeometric function as well. Based on the main results, some integral formulas involving different special functions connected with the generalized Wright function are explicitly established as special cases for different values of the parameters. Moreover, a Gaussian quadrature formula has been used to compute the integrals and compare with the main results by using graphical representations.


2021 ◽  
Vol 58 (2) ◽  
pp. 314-334
Author(s):  
Man-Wai Ho ◽  
Lancelot F. James ◽  
John W. Lau

AbstractPitman (2003), and subsequently Gnedin and Pitman (2006), showed that a large class of random partitions of the integers derived from a stable subordinator of index $\alpha\in(0,1)$ have infinite Gibbs (product) structure as a characterizing feature. The most notable case are random partitions derived from the two-parameter Poisson–Dirichlet distribution, $\textrm{PD}(\alpha,\theta)$, whose corresponding $\alpha$-diversity/local time have generalized Mittag–Leffler distributions, denoted by $\textrm{ML}(\alpha,\theta)$. Our aim in this work is to provide indications on the utility of the wider class of Gibbs partitions as it relates to a study of Riemann–Liouville fractional integrals and size-biased sampling, and in decompositions of special functions, and its potential use in the understanding of various constructions of more exotic processes. We provide characterizations of general laws associated with nested families of $\textrm{PD}(\alpha,\theta)$ mass partitions that are constructed from fragmentation operations described in Dong et al. (2014). These operations are known to be related in distribution to various constructions of discrete random trees/graphs in [n], and their scaling limits. A centerpiece of our work is results related to Mittag–Leffler functions, which play a key role in fractional calculus and are otherwise Laplace transforms of the $\textrm{ML}(\alpha,\theta)$ variables. Notably, this leads to an interpretation within the context of $\textrm{PD}(\alpha,\theta)$ laws conditioned on Poisson point process counts over intervals of scaled lengths of the $\alpha$-diversity.


2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.


Author(s):  
T.G. Ergashev ◽  
A. Hasanov

In the present work, we investigate the Holmgren problem for an multidimensional elliptic equation with several singular coefficients. We use a fundamental solution of the equation, containing Lauricella’s hypergeometric function in many variables. Then using an «abc» method, the uniqueness for the solution of the Holmgren problem is proved. Applying a method of Green’s function, we are able to find the solution of the problem in an explicit form. Moreover, decomposition and summation formulae, formulae of differentiation and some adjacent relations for Lauricella’s hypergeometric functions in many variables were used in order to find the explicit solution for the formulated problem. В данной работе мы исследуем задачу Холмгрена для многомерного эллиптического уравнения с несколькими сингулярными коэффициентами. Мы используем фундаментальное решение уравнения, содержащее гипергеометрическую функцию Лауричеллы от многих переменных. Затем методом «abc» доказывается единственность решения проблемы Холмгрена. Применяя метод функции Грина, мы можем найти решение задачи в явном виде. Более того, формулы разложения и суммирования, формулы дифференцирования и некоторые смежные соотношения для гипергеометрических функций Лауричеллы от многих переменных были использованы для нахождения явного решения поставленной задачи.


Author(s):  
Felix Costa ◽  
Junior Cesar Alves Soares ◽  
Stefânia Jarosz

In this paper, some important properties concerning the κ-Hilfer fractional derivative are discussed. Integral transforms for these operators are derived as particular cases of the Jafari transform. These integral transforms are used to derive a fractional version of the fundamental theorem of calculus. Keywords: Integral transforms, Jafari transform, κ-gamma function, κ-beta function, κ-Hilfer fractional derivative, κ-Riesz fractional derivative, κ-fractional operators.


2019 ◽  
Vol 26 (3) ◽  
pp. 449-458
Author(s):  
Khalida Inayat Noor ◽  
Rashid Murtaza ◽  
Janusz Sokół

Abstract In the present paper we introduce a new convolution operator on the class of all normalized analytic functions in {|z|<1} , by using the hypergeometric function and the Owa–Srivastava operator {\Omega^{\alpha}} defined in [S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 1987, 5, 1057–1077]. This operator is a generalization of the operators defined in [S. K. Lee and K. M. Khairnar, A new subclass of analytic functions defined by convolution, Korean J. Math. 19 2011, 4, 351–365] and [K. I. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 2006, 2, 1872–1881]. Also we introduce some new subclasses of analytic functions using this operator and we discuss some interesting results, such as inclusion results and convolution properties. Our results generalize the results of [S. K. Lee and K. M. Khairnar, A new subclass of analytic functions defined by convolution, Korean J. Math. 19 2011, 4, 351–365].


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1503 ◽  
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Artion Kashuri

There have been many different definitions of fractional calculus presented in the literature, especially in recent years. These definitions can be classified into groups with similar properties. An important direction of research has involved proving inequalities for fractional integrals of particular types of functions, such as Hermite–Hadamard–Fejer (HHF) inequalities and related results. Here we consider some HHF fractional integral inequalities and related results for a class of fractional operators (namely, the weighted fractional operators), which apply to function of convex type with respect to an increasing function involving a positive weighted symmetric function. We can conclude that all derived inequalities in our study generalize numerous well-known inequalities involving both classical and Riemann–Liouville fractional integral inequalities.


Sign in / Sign up

Export Citation Format

Share Document