Extended Mittag-Leffler function and associated fractional calculus operators

2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.

2016 ◽  
Vol 09 (03) ◽  
pp. 1650064 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

The main object of this paper is to present a generalization of the Pochhammer symbol. We present some contiguous relations of this generalized Pochhammer symbol and use it to give an extension of the generalized hypergeometric function [Formula: see text]. Finally, we present some properties and generating functions of this extended generalized hypergeometric function.


Author(s):  
Om Agrawal

AbstractIn this paper, we survey some generalizations of fractional integrals and derivatives and present some of their properties. Using these properties, we show that many integral equations can be solved in a much elegant way. We believe that this will blur the distinction between the integral and differential equations, and provide a systematic approach for the two of these classes.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2260 ◽  
Author(s):  
Virginia Kiryakova

Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function pΨq or pFq (p≤q or p=q+1) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q−p)), 0F0 (exponential function), or 1F0 (beta-distribution of form (1−z)αzβ). The final result, written explicitly, is that any GFC operator (of multiplicity m≥1) transforms a generalized hypergeometric function into the same kind of special function with indices p and q increased by m.


1969 ◽  
Vol 65 (3) ◽  
pp. 591-595 ◽  
Author(s):  
G. E. Barr

Let the generalized hypergeometric function of one variable be denoted bywhere (a)m is the Pochhammer symbol ((1, 3)).


2021 ◽  
Vol 13(62) (2) ◽  
pp. 571-580
Author(s):  
Kamlesh Jangid ◽  
Sunil Dutt Purohit ◽  
Daya Lal Suthar

The desire for present article is to derive from the application of fractional calculus operators a transformation that expresses a potentially useful incomplete hypergeometric function in various forms of a countable sum of lesser-order functions. Often listed are numerous (known or new) specific cases and implications of the findings described herein


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Chandak ◽  
Biniyam Shimelis ◽  
Nigussie Abeye ◽  
A. Padma

In the present paper, we establish some composition formulas for Marichev-Saigo-Maeda (MSM) fractional calculus operators with V -function as the kernel. In addition, on account of V -function, a variety of known results associated with special functions such as the Mittag-Leffler function, exponential function, Struve’s function, Lommel’s function, the Bessel function, Wright’s generalized Bessel function, and the generalized hypergeometric function have been discovered by defining suitable values for the parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
D. L. Suthar

In this article, the k-fractional-order integral and derivative operators including the k-hypergeometric function in the kernel are used for the k-Wright function; the results are presented for the k-Wright function. Also, some of special cases related to fractional calculus operators and k-Wright function are considered.


Author(s):  
Adam C. Mcbride

AbstractTwo index laws for fractional integrals and derivatives, which have been extensively studied by E. R. Love, are shown to be special cases of an index law for general powers of certain differential operators, by means of the theory developed in a previous paper. Discussion of the two index laws, which are rather different in appearance, can thus be unified.


2021 ◽  
Vol 39 (4) ◽  
pp. 97-109
Author(s):  
Asmaa Orabi Mohammed ◽  
Medhat A. Rakha ◽  
Mohammed M. Awad ◽  
Arjun K. Rathie

By employing generalizations of Gauss's second, Bailey's and Kummer's summation theorems obtained earlier by Rakha and Rathie, we aim to establish unknown Laplace transform of six rather general formulas of generalized hypergeometric function 2F2[a,b;c,d;x]. The results obtained in this paper are simple, interesting, easily established and may be useful in theoretical physics, engineering and mathematics. Results obtained earlier by Kim et al. and Choi and Rathie follow special cases of our main findings.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550082 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

Recently, Opps, Saad and Srivastava [Recursion formulas for Appell’s hypergeometric function [Formula: see text] with some applications to radiation field problems, Appl. Math. Comput. 207 (2009) 545–558] presented the recursion formulas for Appell’s function [Formula: see text] and also gave its applications to radiation field problems. Then Wang [Recursion formulas for Appell functions, Integral Transforms Spec. Funct. 23(6) (2012) 421–433] obtained the recursion formulas for Appell functions [Formula: see text] and [Formula: see text]. In our investigation here, we derive the recursion formulas for 14 three-variable Lauricella functions, three Srivastava’s triple hypergeometric functions and four [Formula: see text]-variable Lauricella functions.


Sign in / Sign up

Export Citation Format

Share Document