scholarly journals Oscillation results for nonlinear second order difference equations with mixed neutral terms

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Said R. Grace ◽  
Jehad Alzabut

AbstractIn this paper, we establish new oscillation criteria for nonlinear second order difference equations with mixed neutral terms. The key idea of our approach is to compare with first order equations whose oscillatory behaviors are already known. The obtained results not only improve and extend existing results reported in the literature but also provide a new platform for the investigation of a wide class of nonlinear second order difference equations. The results are supported by examples to demonstrate the validity of the theoretical findings.

2015 ◽  
Vol 46 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Ethiraju Thandapani ◽  
Devarajulu Seghar ◽  
Sandra Pinelas

In this paper we obtain some new oscillation criteria for the neutral difference equation \begin{equation*} \Delta \Big(a_n (\Delta (x_n-p_n x_{n-k}))\Big)+q_n f(x_{n-l})=0 \end{equation*} where $0\leq p_n\leq p0$ and $l$ and $k$ are positive integers. Examples are presented to illustrate the main results. The results obtained in this paper improve and complement to the existing results.


2019 ◽  
pp. 76-80
Author(s):  
M.I. Ayzatsky

The transformation of the N-th-order linear difference equation into a system of the first order difference equations is presented. The proposed transformation opens possibility to obtain new forms of the N-dimensional system of the first order equations that can be useful for the analysis of solutions of the N-th-order difference equations. In particular for the third-order linear difference equation the nonlinear second-order difference equation that plays the same role as the Riccati equation for second-order linear difference equation is obtained. The new form of the Ndimensional system of first order equations can also be used to find the WKB solutions of the linear difference equation with coefficients that vary slowly with index.


2021 ◽  
Vol 71 (4) ◽  
pp. 871-880
Author(s):  
George E. Chatzarakis ◽  
Said R. Grace ◽  
Irena Jadlovská

Abstract This paper deals with the oscillation of second-order nonlinear retarded difference equations. We present some new oscillation criteria via comparison with first-order equations whose oscillatory behavior are known. The results are generalized to be applicable to different kinds of neutral equations. An example is also given to demonstrate the applicability of the obtained conditions.


2006 ◽  
Vol 47 (3) ◽  
pp. 359-366
Author(s):  
Kenneth S. Berenhaut ◽  
Eva G. Goedhart ◽  
Stevo Stević

AbstractThis paper gives explicit, applicable bounds for solutions of a wide class of third-order difference equations with nonconstant coefficients. The techniques used are readily adaptable for higher-order equations. The results extend recent work of the authors for second-order equations.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document