scholarly journals Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Nurhussen Ahmed ◽  
Clement Atzberger ◽  
Worku Zewdie

Abstract Background Species Distribution Modelling (SDM) coupled with freely available multispectral imagery from Sentinel-2 (S2) satellite provides an immense contribution in monitoring invasive species. However, attempts to evaluate the performances of SDMs using S2 spectral bands and S2 Radiometric Indices (S2-RIs) and biophysical variables, in particular, were limited. Hence, this study aimed at evaluating the performance of six commonly used SDMs and one ensemble model for S2-based variables in modelling the current distribution of Prosopis juliflora in the lower Awash River basin, Ethiopia. Thirty-five variables were computed from Sentinel-2B level-2A, and out of the variables, twelve significant variables were selected using Variable Inflation Factor (VIF). A total of 680 presence and absence data were collected to train and validate variables using the tenfold bootstrap replication approach in the R software “sdm” package. The performance of the models was evaluated using sensitivity, specificity, True Skill Statistics (TSS), kappa coefficient, area under the curve (AUC), and correlation. Results Our findings demonstrated that except bioclim all machine learning and regression models provided successful prediction. Among the tested models, Random Forest (RF) performed better with 93% TSS and 99% AUC followed by Boosted Regression Trees (BRT), ensemble, Generalized Additive Model (GAM), Support Vector Machine (SVM), and Generalized Linear Model (GLM) in decreasing order. The relative influence of vegetation indices was the highest followed by soil indices, biophysical variables, and water indices in decreasing order. According to RF prediction, 16.14% (1553.5 km2) of the study area was invaded by the alien species. Conclusions Our results highlighted that S2-RIs and biophysical variables combined with machine learning and regression models have a higher capacity to model invasive species distribution. Besides, the use of machine learning algorithms such as RF algorithm is highly essential for remote sensing-based invasive SDM.

2019 ◽  
Vol 392 ◽  
pp. 179-195 ◽  
Author(s):  
Sacha Gobeyn ◽  
Ans M. Mouton ◽  
Anna F. Cord ◽  
Andrea Kaim ◽  
Martin Volk ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217896 ◽  
Author(s):  
Marta Rodríguez-Rey ◽  
Sofia Consuegra ◽  
Luca Börger ◽  
Carlos Garcia de Leaniz

2018 ◽  
Vol 95 ◽  
pp. 311-319 ◽  
Author(s):  
Manuele Bazzichetto ◽  
Marco Malavasi ◽  
Vojtěch Bartak ◽  
Alicia Teresa Rosario Acosta ◽  
Duccio Rocchini ◽  
...  

2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


Sign in / Sign up

Export Citation Format

Share Document