species distribution modelling
Recently Published Documents


TOTAL DOCUMENTS

419
(FIVE YEARS 191)

H-INDEX

48
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Tatiana Shupova ◽  
Volodymyr Tytar

Since the 1980s there has been a long-term decline in numbers and contraction of range in Europe, including Ukraine. Our specific goals were to reconstruct the climatically suitable range of the species in Ukraine before the 1980s, gain better knowledge on its requirements, compare the past and current suitable areas, infer the regional and environmental variables that best explain its occurrence, and quantify the overall range change in the country. For these purposes we created a database consisting of 347 records of the roller made ever in Ukraine. We employed a species distribution modeling (SDM) approach to hindcast changes in the suitable range of the roller during historical times across Ukraine and to derive spatially explicit predictions of climatic suitability for the species under current climate. SDMs were created for three time intervals (before 1980, 1985-2009, 2010-2021) using corresponding climate data extracted from the TerraClim database. SDMs show a decline of suitable for rollers areas in the country from 85 to 46%. Several factors, including land cover and use, human population density and climate, that could have contributed to the decline of the species in Ukraine were considered. We suggest climate change and its speed (velocity) have been responsible for shaping the contemporary home range of the European roller. Key words: Coracias garrulus; species distribution modelling; ecological niche; climate change; velocity of climate change


Zootaxa ◽  
2021 ◽  
Vol 5082 (1) ◽  
pp. 53-64
Author(s):  
NÉSTOR G. VALLE ◽  
MARIO G. IBARRA-POLESEL ◽  
MARIANA ALEJANDRA CHERMAN ◽  
MARCELA L. MONNÉ ◽  
MIRYAM P. DAMBORSKY

Cnemidochroma Schmidt, 1924, a small genus of the tribe Callichromatini endemic in South America, comprises six species of which the only one recorded in Paraguay, Uruguay, Argentina and Brazil is C. phyllopus (Guérin-Méneville, 1844). The aim of this study was to estimate potential suitable areas for C. phyllopus to provide further knowledge on its current distribution. A dataset of 43 records was compiled and species distribution modelling was employed linking these occurrences with bioclimatic variables. Results indicate higher suitability conditions along the Atlantic coast of Brazil, reaching north Uruguay and extending inland to Paraguay and northern parts of Argentina. In addition, we report a new distributional record from Corrientes, Argentina.  


2021 ◽  
Vol 71 ◽  
pp. 799-811
Author(s):  
Haithem El-Farhati ◽  
Mourad Khaldi ◽  
Alexis Ribas ◽  
Mohamed Wassim Hizem ◽  
Saïd Nouira ◽  
...  

Abstract Two species of hedgehogs are known to occur in northern part of Africa: the Algerian hedgehog Atelerix algirus and the Ethiopian hedgehog Paraechinus aethiopicus. Within each species several subspecies were described based on morphometrical data and pelage coloration, but all these subspecies have enigmatic and unclear definitions. We investigated the phylogeographical history and taxonomy of these two species based on mitochondrial DNA data covering the entire geographical distribution of A. algirus and the North African distribution of P. aethiopicus. We also used climatic niche modelling to make inferences about their evolutionary history. Low genetic diversity was recovered in both species. While no phylogeographic pattern was found in P. aethiopicus, two haplogroups were identified within A. algirus. This could be explained by the fact that continuous high or moderate climatic suitability occurred throughout most of the Saharan desert since the LGM (Last Glacial Maximum) for the first species, while during the LGM there were several disconnected areas of high climatic suitability for A. algirus: one in South-West Morocco, one at the coastal Moroccan-Algerian border and one in Tunisia-coastal Libya. Our genetic results confirm that A. algirus recently colonized Spain, Balearic and Canary Islands, and that this colonization was probably mediated by humans. Suitable climatic conditions occurred throughout most of the Southern and Eastern Iberian Peninsula during the last 6,000 years which could have favored the spatial expansion of the Algerian hedgehog after its arrival in Europe. According to our molecular results subspecific recognition within North Africa is unwarranted for both species.


2021 ◽  
Vol 948 (1) ◽  
pp. 012020
Author(s):  
A Yudaputra

Abstract Nepenthes sumatrana is a tropical pitcher plant endemic to Sumatra. It has been categorised as critically endangered based on the IUCN Red List. It often occupies in lowland tropical forest of Sumatra. Its habitat has been threatened by land use conversion in the recent decade. Due to the high threats in the wild, the conservation efforts are necessarily required. It is not possible to assess all locations that are suitable for this species. In terms of addressing that issue, Species Distribution Modelling is considered as an alternative way to identify the regions that have the similar environmental conditions to where the species is known to occur. The occurrence records were derived from Global Biodiversity Information Facility and reliable scientific papers. Topography, soil, climate and land cover were used as predictors of the model. MaxEnt algorithm was used to predict the habitat suitability. MaxEnt produces a predictive model with the AUC value of 0.833 indicating that the model has a good performance. The suitable habitats are predicted in several different locations in Sumatra. The information about predicted suitability habitat would be useful to prioritize the protected areas of this species. Furthermore, our findings would be valuable for the discovery of unknown subpopulation.


2021 ◽  
Author(s):  
Renato O. Miyaji ◽  
Pedro L. P. Corrêa

Uma das ferramentas mais utilizadas para o monitoramento da biodiversidade é a modelagem de distribuição de espécies. Para a sua aplicação, é necessário possuir uma grande base de dados confiáveis a respeito da ocorrência de espécies. Entretanto, essa condição não é satisfeita quando existem poucos registros de ocorrência. Nesse contexto, podem ser aplicadas técnicas de tratamento de incertezas. Assim, este trabalho buscou utilizar a abordagem Bayesiana para permitir a modelagem de distribuição de espécies na região da Bacia Amazônica próxima a Manaus (AM), com base em dados coletados pelo projeto GoAmazon 2014/15. Os resultados foram comparados com os resultantes de técnicas clássicas, obtendo desempenhos semelhantes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rebecca E. Ross ◽  
Genoveva Gonzalez-Mirelis ◽  
Pablo Lozano ◽  
Pål Buhl-Mortensen

Sea pens are considered to be of conservation relevance according to multiple international legislations and agreements. Consequently, any information about their ecology and distribution should be of use to management decision makers. This study aims to provide such information about six taxa of sea pen in Norwegian waters [Funiculina quadrangularis (Pallas, 1766), Halipteris spp., Kophobelemnon stelliferum (Müller, 1776), Pennatulidae spp., Umbellula spp., and Virgulariidae spp.]. Data exploration techniques and ensembled species distribution modelling (SDM) are applied to video observations obtained by the MAREANO project between 2006 and 2020. Norway-based ecological profiles and predicted distributions are provided and discussed. External validations and uncertainty metrics highlight model weaknesses (overfitting, limited training/external observations) and consistencies relevant to marine management. Comparison to international literature further identifies globally relevant findings: (a) disparities in the environmental profile of F. quadrangularis suggest differing “realised niches” in different locations, potentially highlighting this taxon as particularly vulnerable to impact, (b) none of the six sea pen taxa were found to consistently co-occur, instead partially overlapping environmental profiles suggests that grouping taxa as “sea pens and burrowing megafauna” should be done with caution post-analyses only, (c) higher taxonomic level groupings, while sometimes necessary due to identification issues, result in poorer quality predictive models and may mask the occurrence of rarer species. Community-based groupings are therefore preferable due to confirmed shared ecological niches while greater value should be placed on accurate species ID to support management efforts.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Luis Machado ◽  
D. James Harris ◽  
Daniele Salvi

Abstract Background The contribution of North Africa to the assembly of biodiversity within the Western Palaearctic is still poorly documented. Since the Miocene, multiple biotic exchanges occurred across the Strait of Gibraltar, underlying the high biogeographic affinity between the western European and African sides of the Mediterranean basin. We investigated the biogeographic and demographic dynamics of two large Mediterranean-adapted snakes across the Strait and assess their relevance to the origin and diversity patterns of current European and North African populations. Results We inferred phylogeographic patterns and demographic history of M. monspessulanus and H. hippocrepis, based on range-wide multilocus data, combined with fossil data and species distribution modelling, under present and past bioclimatic envelopes. For both species we identified endemic lineages in the High Atlas Mountains (Morocco) and in eastern Iberia, suggesting their persistence in Europe during the Pleistocene. One lineage is shared between North Africa and southern Iberia and likely spread from the former to the latter during the sea-level low stand of the last glacial stage. During this period M. monspessulanus shows a sudden demographic expansion, associated with increased habitat suitability in North Africa. Lower habitat suitability is predicted for both species during interglacial stages, with suitable areas restricted to coastal and mountain ranges of Iberia and Morocco. Compiled fossil data for M. monspessulanus show a continuous fossil record in Iberia at least since the Pliocene and throughout the Pleistocene. Conclusions The previously proposed hypothesis of Pleistocene glacial extinction of both species in Europe is not supported based on genetic data, bioclimatic envelopes models, and the available fossil record. A model of range retraction to mountain refugia during arid periods and of glacial expansion (demographic and spatial) associated to an increase of Mediterranean habitats during glacial epochs emerges as a general pattern for mesic vertebrates in North Africa. Moreover, the phylogeographic pattern of H. hippocrepis conforms to a well-established biogeographic partition between western and eastern Maghreb.


2021 ◽  
Author(s):  
◽  
Josef Rehua Beautrais

<p>Senecio glastifolius (Asteraceae) is an invasive species in New Zealand, where it threatens rare and vulnerable coastal floristic communities. It has expanded its range dramatically over recent years and continues to spread. It is subject to control programs in parts of its distribution. Uncertainty over its future distribution and invasive impacts in New Zealand contribute to the difficulty of its management. To address this knowledge gap, the potential distribution of S. glastifolius in New Zealand was predicted, based on its bioclimatic niche.  Existing information on its current distribution and historic spread is incomplete, stored in disparate sources, and is often imprecise or inaccurate. In this study, available information on its distribution and spread was synthesised, processed, and augmented with new data collected in the field by the author. This data set was optimised for use in species distribution modelling.  The distribution of S. glastifolius is described in its native range of South Africa, plus invaded regions in Australia, the British Isles and New Zealand. The data set describing its distribution is of higher quality than any known previous data set, is more extensive, and more suitable for use in species distribution modelling. The historic spread of S. glastifolius in New Zealand is presented, illustrating its expansion from sites of introduction in Wellington, Gisborne, plus several subsequent sites, to its now considerable range throughout much of central New Zealand.  A predictive model of the potential distribution of S. glastifolius was created based on the three main climatic variables observed to limit its distribution: mean annual temperature range, aridity, and minimum temperature of the coldest month. MaxEnt models were trained on data from all regions for which georeferenced records of the species were available; South Africa, Australia, New Zealand and the Isles of Scilly. Predictions were evaluated using methods appropriate to the special case of range-expanding species. Models performed well during validation, suggesting good predictive ability when applied to new areas.  Analysis of the realised niche space of S. glastifolius in the two climatic dimensions most influencing its distribution: Annual Temperature Range and Aridity, indicated that it is exploiting almost totally disjunct niche spaces in New Zealand and South Africa. Of the climate space occupied in New Zealand, almost none is available to the species in its native range of South Africa.  Predictions of S. glastifolius’s potential distribution in New Zealand reveal significant areas of suitable habitat yet to be invaded. Much of this suitable habitat is contiguous with the current range and active dispersal front of S. glastifolius, suggesting that invasion is highly likely under a scenario of no management intervention. Specifically, it is suggested that control and surveillance in coastal Taranaki are required to prevent invasion of an area covering most of the northern third of the North Island.</p>


2021 ◽  
Author(s):  
◽  
Josef Rehua Beautrais

<p>Senecio glastifolius (Asteraceae) is an invasive species in New Zealand, where it threatens rare and vulnerable coastal floristic communities. It has expanded its range dramatically over recent years and continues to spread. It is subject to control programs in parts of its distribution. Uncertainty over its future distribution and invasive impacts in New Zealand contribute to the difficulty of its management. To address this knowledge gap, the potential distribution of S. glastifolius in New Zealand was predicted, based on its bioclimatic niche.  Existing information on its current distribution and historic spread is incomplete, stored in disparate sources, and is often imprecise or inaccurate. In this study, available information on its distribution and spread was synthesised, processed, and augmented with new data collected in the field by the author. This data set was optimised for use in species distribution modelling.  The distribution of S. glastifolius is described in its native range of South Africa, plus invaded regions in Australia, the British Isles and New Zealand. The data set describing its distribution is of higher quality than any known previous data set, is more extensive, and more suitable for use in species distribution modelling. The historic spread of S. glastifolius in New Zealand is presented, illustrating its expansion from sites of introduction in Wellington, Gisborne, plus several subsequent sites, to its now considerable range throughout much of central New Zealand.  A predictive model of the potential distribution of S. glastifolius was created based on the three main climatic variables observed to limit its distribution: mean annual temperature range, aridity, and minimum temperature of the coldest month. MaxEnt models were trained on data from all regions for which georeferenced records of the species were available; South Africa, Australia, New Zealand and the Isles of Scilly. Predictions were evaluated using methods appropriate to the special case of range-expanding species. Models performed well during validation, suggesting good predictive ability when applied to new areas.  Analysis of the realised niche space of S. glastifolius in the two climatic dimensions most influencing its distribution: Annual Temperature Range and Aridity, indicated that it is exploiting almost totally disjunct niche spaces in New Zealand and South Africa. Of the climate space occupied in New Zealand, almost none is available to the species in its native range of South Africa.  Predictions of S. glastifolius’s potential distribution in New Zealand reveal significant areas of suitable habitat yet to be invaded. Much of this suitable habitat is contiguous with the current range and active dispersal front of S. glastifolius, suggesting that invasion is highly likely under a scenario of no management intervention. Specifically, it is suggested that control and surveillance in coastal Taranaki are required to prevent invasion of an area covering most of the northern third of the North Island.</p>


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2425
Author(s):  
Samira Ben-Menni Schuler ◽  
Jesús Picazo-Aragonés ◽  
Fred J. Rumsey ◽  
Ana Teresa Romero-García ◽  
Víctor N. Suárez-Santiago

Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation.


Sign in / Sign up

Export Citation Format

Share Document