scholarly journals In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lisanne J. van’t Sant ◽  
Joshua J. White ◽  
Jan H. J. Hoeijmakers ◽  
Wilbert P. Vermeij ◽  
Dick Jaarsma

AbstractFluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.

2012 ◽  
Vol 109 (43) ◽  
pp. 17693-17698 ◽  
Author(s):  
T. Unno ◽  
M. Wakamori ◽  
M. Koike ◽  
Y. Uchiyama ◽  
K. Ishikawa ◽  
...  

1995 ◽  
Vol 73 (6) ◽  
pp. 2568-2577 ◽  
Author(s):  
T. E. Milner ◽  
G. Cadoret ◽  
L. Lessard ◽  
A. M. Smith

1. The effects of intraperitoneal injections of 10 mg/kg harmaline were tested in normal mice and three strains of cerebellar mutant mice with Purkinje cell degeneration. Ten normal (wild-type) mice (+/+), as well as five lurcher (lc/+), six nervous (nr/nr), and eight Purkinje cell degeneration (pcd/pcd) mutants were implanted with chronic electromyogram (EMG) electrodes in the hamstring and quadriceps muscle groups of the right hindlimb. 2. EMGs were recorded in each of the mice during spontaneous activity before and after intraperitoneal injections of 0.3 ml harmaline (10 mg/kg). Spectral analysis was used to quantify the amplitude and frequency of tremor found in the EMGs after harmaline administration. Normal mice responded to harmaline with strong, continuous 11- to 14-Hz tremor. Mutants from the pcd/pcd strain also reacted with continuous tremor, but of lower amplitude and frequency. In contrast, nr/nr mutants exhibited intermittent paroxysmal tremor lasting for only a few seconds, and lc/+ mutants showed no evidence of tremor whatsoever. 3. In order to detect covert tremor that was possibly not revealed by focal intramuscular EMG recordings, several mutant and normal mice were also tested on a suspended platform to which an accelerometer was attached. The results confirmed the findings from EMG recordings. 4. An incidental observation made during the course of this study was that harmaline tremor disappeared from the normal mouse during swimming and reappeared when the animal was withdrawn from the water. 5. Although Purkinje cells appeared to increase both the depth of modulation and the frequency of tremor, the inhibitory action of the cerebellar cortex does not seem to be essential for the generation of tremor. 6. Parasagittal cerebellar sections of the normal, wild-type mice and the three strains of cerebellar mutant mice of various ages were stained with cresyl violet and examined for Purkinje cell degeneration. Purkinje cell degeneration was found to be complete in the pcd/pcd and lc/+ strains. Although an initial examination of parasagittal sections of the nr/nr strain failed to find any surviving Purkinje cells, further examination of sections cut in the coronal plane revealed small clusters of Purkinje cells in the vermal area of the posterior lobe. 7. The retrograde transport of wheat-germ-agglutinin-conjugated horseradish peroxidase (WGA-HRP) pressure-injected into the cerebellar cortex was used to study the olivocerebellar projections in the wild-type mice and the three strains of cerebellar mutant mice.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document