scholarly journals The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament—a finite element study

2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahmadreza Sardarian ◽  
Shahla Momeni danaei ◽  
Shoaleh Shahidi ◽  
Sahar Ghodsi Boushehri ◽  
Allahyar Geramy
2014 ◽  
Vol 5 (1) ◽  
pp. 11-16 ◽  
Author(s):  
AS Pavithra ◽  
GS Prashanth ◽  
SE Shekar

ABSTRACT Objectives The objective of this study was to graphically display the pattern and magnitude of stress distribution along the periodontal ligament and the alveolar bone of upper first molars on application of intrusive forces using microscrew implants. Materials and methods A computer simulation of threedimensional model of maxillary first molars and second molars bilaterally with their periodontal ligament and alveolar bone, with microscrew implants, force element and a transpalatal arch were constructed on the basis of average anatomic morphology. Finite element analysis was done to evaluate the amount of stress and its distribution during orthodontic intrusive force. Results Overall maximum stress in this study was seen in the alveolar bone in the implant insertion area of 7.155 N/mm2. Maximum stress in the periodontal ligament was seen in middle third distocervical palatal root surface of the first molar (0.008993 N/mm2). Maximum stress in the enamel was seen in the distal aspect of the cementoenamel junction (0.423 N/mm2). Maximum stress in the dentin was observed in apical one-third of the mesiobuccal root surface of first molar (0.1785 N/mm2). Conclusion In this study with the use of palatal implant and transpalatal arch, we found that there was no tipping observed during intrusion. This study demonstrates that significant true intrusion of maxillary molars could be obtained in a wellcontrolled manner by using fixed appliances with microscrew implant as bony anchorage. How to cite this article Pavithra AS, Prashanth GS, Mathew S, Shekar SE. Analysis of Stress in the Periodontal Ligament and Alveolar Bone of the Maxillary First Molars during Intrusion with Microscrew Implants: A 3D Finite Element Study. World J Dent 2014;5(1):11-16.


2011 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Anirudh K Mathur ◽  
Anirban Sarmah ◽  
Vinaya S Pai ◽  
G Chandrashekar

ABSTRACT Aim This finite element study was conducted to calculate the distribution of stresses in the periodontal ligament when various orthodontic forces were applied, with emphasis on the effect on root apex. Materials and methods An in vitro finite element method was used to construct a three-dimensional finite element model of a maxillary central incisor, its periodontal ligament and alveolar bone was constructed on the basis of average anatomic morphology. To this model, five types of orthodontic forces namely tipping, bodily movement, intrusion, extrusion and rotations were applied at various points on the crown of the tooth model. After the application of the forces, initial stress and initial displacements of the periodontal ligament were evaluated. The principal stress obtained on the periodontal ligament due to various orthodontic loadings on the maxillary central incisor was analyzed using ANSYS 10 finite element software. Results It showed that the greatest amount of relative stress at the apex of maxillary central incisor occurred with intrusion, extrusion and rotation. Bodily movement and tipping forces produce stress concentrated at the alveolar crest and not at the root apex. Conclusion Clinical implications of this study suggest that if the clinician is concerned about placing heavy stresses on the root apex, then vertical and rotational forces must be applied with caution. Clinical Significance If heavy stresses are to be placed on the root apex, then vertical and rotational forces must be applied with caution during orthodontic therapy. How to cite this article Mathur AK, Gupta V, Sarmah A, Pai VS, Chandrashekar G. Apical Force Distribution due to Orthodontic Forces: A Finite Element Study. J Contemp Dent Pract 2011;12(2):104-108.


Author(s):  
Ali Merdji ◽  
Belaid Taharou ◽  
Rajshree Hillstrom ◽  
Ali Benaissa ◽  
Sandipan Roy ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4737
Author(s):  
Chao Xu ◽  
Suli Pan

The coefficient of consolidation is traditionally considered as a constant value in soil consolidation calculations. This paper uses compression and recompression indexes to calculate the solution-dependent nonlinear compressibility, thus overconsolidation and normal consolidation are separated during the calculations. Moreover, the complex nonlinear consolidation can be described using the nonlinear compressibility and a nonlinear permeability. Then, the finite element discrete equation with consideration of the time-dependent load is derived, and a corresponding program is developed. Subsequently, a case history is conducted for verifying the proposed method and the program. The results show that the method is sufficiently accurate, indicating the necessity of considering nonlinearity for consolidation calculations. Finally, three cases are compared to reveal the importance of separating the overconsolidation and normal consolidation. Overall, this study concluded that it is inadequate to consider just one consolidation status in calculations, and that the proposed method is more reasonable for guiding construction.


Sign in / Sign up

Export Citation Format

Share Document