scholarly journals Light detection and ranging (LIDAR) laser altimeter for the Martian Moons Exploration (MMX) spacecraft

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hiroki Senshu ◽  
Takahide Mizuno ◽  
Kazuhiro Umetani ◽  
Toru Nakura ◽  
Akihiro Konishi ◽  
...  

AbstractAn altimeter is a critical instrument in planetary missions, for both safe operations and science activities. We present required specifications and link budget calculations for light detection and ranging (LIDAR) onboard the Martian Moons Exploration (MMX) spacecraft. During the mission phase, this LIDAR will continuously measure the distance between the spacecraft and its target. The time-series distance provides important diagnostic information for safe spacecraft operations and important information for geomorphological studies. Because MMX is a sample return mission, its LIDAR must accommodate physical disturbances on the Martian satellite surface. This resulted in changes to the optical system design. Graphical abstract

2021 ◽  
Author(s):  
Hiroki Senshu ◽  
Takahide Mizuno ◽  
Kazuhiro Umetani ◽  
Toru Nakura ◽  
Akihiro Konishi ◽  
...  

Abstract An altimeter is a critical instrument in planetary missions, for both safe operations and science activities. We present required specifications and link budget calculations for light detection and ranging (LIDAR) onboard the Martian Moons Exploration (MMX) spacecraft. During the mission phase, this LIDAR will continuously measure the distance between the spacecraft and its target. The time-series distance provides important diagnostic information for safe spacecraft operations and important information for geomorphological studies. Because MMX is a sample return mission, its LIDAR must accommodate physical disturbances on the Martian satellite surface. This resulted in changes to the optical system design.


2014 ◽  
Vol 66 (1) ◽  
Author(s):  
Takashi Mikouchi ◽  
Mutsumi Komatsu ◽  
Kenji Hagiya ◽  
Kazumasa Ohsumi ◽  
Michael E Zolensky ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Hans-Erik Andersen

Abstract Airborne laser scanning (also known as light detection and ranging or LIDAR) data were used to estimate three fundamental forest stand condition classes (forest stand size, land cover type, and canopy closure) at 32 Forest Inventory Analysis (FIA) plots distributed over the Kenai Peninsula of Alaska. Individual tree crown segment attributes (height, area, and species type) were derived from the three-dimensional LIDAR point cloud, LIDAR-based canopy height models, and LIDAR return intensity information. The LIDAR-based crown segment and canopy cover information was then used to estimate condition classes at each 10-m grid cell on a 300 × 300-m area surrounding each FIA plot. A quantitative comparison of the LIDAR- and field-based condition classifications at the subplot centers indicates that LIDAR has potential as a useful sampling tool in an operational forest inventory program.


Sign in / Sign up

Export Citation Format

Share Document