scholarly journals Wireless Sensor material Fusion based Single photon indium phosphide on silicon chip for frequency-modulated continuous-wave light detection and ranging

2021 ◽  
Vol 1804 (1) ◽  
pp. 012184
Author(s):  
R Selvakumar ◽  
Ngangbam Phalguni Singh ◽  
Shruti Suman
2021 ◽  
Vol 119 (23) ◽  
pp. 231103
Author(s):  
Ryo Tetsuya ◽  
Takemasa Tamanuki ◽  
Hiroyuki Ito ◽  
Hiroshi Abe ◽  
Ryo Kurahashi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3839
Author(s):  
Federica Villa ◽  
Fabio Severini ◽  
Francesca Madonini ◽  
Franco Zappa

Light Detection and Ranging (LiDAR) is a 3D imaging technique, widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Achieving long-ranges and high-speed, most of all in outdoor applications with strong solar background illumination, are challenging requirements. In the introduction we review different 3D-ranging techniques (stereo-vision, projection with structured light, pulsed-LiDAR, amplitude-modulated continuous-wave LiDAR, frequency-modulated continuous-wave interferometry), illumination schemes (single point and blade scanning, flash-LiDAR) and time-resolved detectors for LiDAR (EM-CCD, I-CCD, APD, SPAD, SiPM). Then, we provide an extensive review of silicon- single photon avalanche diode (SPAD)-based LiDAR detectors (both commercial products and research prototypes) analyzing how each architecture faces the main challenges of LiDAR (i.e., long ranges, centimeter resolution, large field-of-view and high angular resolution, high operation speed, background immunity, eye-safety and multi-camera operation). Recent progresses in 3D stacking technologies provided an important step forward in SPAD array development, allowing to reach smaller pitch, higher pixel count and more complex processing electronics. In the conclusions, we provide some guidelines for the design of next generation SPAD-LiDAR detectors.


2009 ◽  
Vol 24 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Hans-Erik Andersen

Abstract Airborne laser scanning (also known as light detection and ranging or LIDAR) data were used to estimate three fundamental forest stand condition classes (forest stand size, land cover type, and canopy closure) at 32 Forest Inventory Analysis (FIA) plots distributed over the Kenai Peninsula of Alaska. Individual tree crown segment attributes (height, area, and species type) were derived from the three-dimensional LIDAR point cloud, LIDAR-based canopy height models, and LIDAR return intensity information. The LIDAR-based crown segment and canopy cover information was then used to estimate condition classes at each 10-m grid cell on a 300 × 300-m area surrounding each FIA plot. A quantitative comparison of the LIDAR- and field-based condition classifications at the subplot centers indicates that LIDAR has potential as a useful sampling tool in an operational forest inventory program.


Wind Energy ◽  
2012 ◽  
Vol 16 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Knud A. Kragh ◽  
Morten H. Hansen ◽  
Torben Mikkelsen

2021 ◽  
pp. 1-1
Author(s):  
Chul-Soon Im ◽  
Sung-Moon Kim ◽  
Kyeong-Pyo Lee ◽  
Seong-Hyeon Ju ◽  
Jung-Ho Hong ◽  
...  

2012 ◽  
Vol 51 (8) ◽  
pp. 083609-1 ◽  
Author(s):  
Hajin J. Kim ◽  
Charles B. Naumann ◽  
Michael C. Cornell

Sign in / Sign up

Export Citation Format

Share Document